Guide to the Secure Configuration of Red Hat Enterprise Linux CoreOS 4

with profile North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) cybersecurity standards profile for Red Hat Enterprise Linux CoreOS
This compliance profile reflects a set of security recommendations for the usage of Red Hat Enterprise Linux CoreOS in critical infrastructure in the energy sector. This follows the recommendations coming from the following CIP standards: - CIP-002-5 - CIP-003-8 - CIP-004-6 - CIP-005-6 - CIP-007-3 - CIP-007-6 - CIP-009-6
This guide presents a catalog of security-relevant configuration settings for Red Hat Enterprise Linux CoreOS 4. It is a rendering of content structured in the eXtensible Configuration Checklist Description Format (XCCDF) in order to support security automation. The SCAP content is is available in the scap-security-guide package which is developed at https://www.open-scap.org/security-policies/scap-security-guide.

Providing system administrators with such guidance informs them how to securely configure systems under their control in a variety of network roles. Policy makers and baseline creators can use this catalog of settings, with its associated references to higher-level security control catalogs, in order to assist them in security baseline creation. This guide is a catalog, not a checklist, and satisfaction of every item is not likely to be possible or sensible in many operational scenarios. However, the XCCDF format enables granular selection and adjustment of settings, and their association with OVAL and OCIL content provides an automated checking capability. Transformations of this document, and its associated automated checking content, are capable of providing baselines that meet a diverse set of policy objectives. Some example XCCDF Profiles, which are selections of items that form checklists and can be used as baselines, are available with this guide. They can be processed, in an automated fashion, with tools that support the Security Content Automation Protocol (SCAP). The DISA STIG, which provides required settings for US Department of Defense systems, is one example of a baseline created from this guidance.
Do not attempt to implement any of the settings in this guide without first testing them in a non-operational environment. The creators of this guidance assume no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any other characteristic.
Profile TitleNorth American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) cybersecurity standards profile for Red Hat Enterprise Linux CoreOS
Profile IDxccdf_org.ssgproject.content_profile_nerc-cip

Revision History

Current version: 0.1.75

  • draft (as of 2025-01-11)

Platforms

  • cpe:/o:redhat:enterprise_linux_coreos:4

Table of Contents

  1. System Settings
    1. Installing and Maintaining Software
    2. Account and Access Control
    3. GRUB2 bootloader configuration
    4. Configure Syslog
    5. Network Configuration and Firewalls
    6. File Permissions and Masks
    7. SELinux
  2. Services
    1. Network Time Protocol
    2. SSH Server
    3. USBGuard daemon
  3. System Accounting with auditd
    1. Configure auditd Rules for Comprehensive Auditing
    2. Configure auditd Data Retention

Checklist

contains 241 rules

System Settings   [ref]group

Contains rules that check correct system settings.

contains 88 rules

Installing and Maintaining Software   [ref]group

The following sections contain information on security-relevant choices during the initial operating system installation process and the setup of software updates.

contains 8 rules

System and Software Integrity   [ref]group

System and software integrity can be gained by installing antivirus, increasing system encryption strength with FIPS, verifying installed software, enabling SELinux, installing an Intrusion Prevention System, etc. However, installing or enabling integrity checking tools cannot prevent intrusions, but they can detect that an intrusion may have occurred. Requirements for integrity checking may be highly dependent on the environment in which the system will be used. Snapshot-based approaches such as AIDE may induce considerable overhead in the presence of frequent software updates.

contains 5 rules

Federal Information Processing Standard (FIPS)   [ref]group

The Federal Information Processing Standard (FIPS) is a computer security standard which is developed by the U.S. Government and industry working groups to validate the quality of cryptographic modules. The FIPS standard provides four security levels to ensure adequate coverage of different industries, implementation of cryptographic modules, and organizational sizes and requirements.

FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules utilize authentication that meets industry and government requirements. For government systems, this allows Security Levels 1, 2, 3, or 4 for use on Red Hat Enterprise Linux CoreOS 4.

See http://csrc.nist.gov/publications/PubsFIPS.html for more information.

contains 1 rule

Enable FIPS Mode   [ref]rule

OpenShift has an installation-time flag that can enable FIPS mode for the cluster. The flag

fips: true
must be enabled at install time in the
install-config.yaml
file. If this rule fails on an installed cluster, then this is a permanent finding and cannot be fixed.

Warning:  The system needs to be rebooted for these changes to take effect.
Warning:  This rule DOES NOT CHECK if the components of the operating system are FIPS certified. You can find the list of FIPS certified modules at https://csrc.nist.gov/projects/cryptographic-module-validation-program/validated-modules/search. This rule checks if the system is running in FIPS mode. See the rule description for more information about what it means.
Rationale:

Use of weak or untested encryption algorithms undermines the purposes of utilizing encryption to protect data. The operating system must implement cryptographic modules adhering to the higher standards approved by the federal government since this provides assurance they have been tested and validated.

Severity:  high

System Cryptographic Policies   [ref]group

Linux has the capability to centrally configure cryptographic polices. The command update-crypto-policies is used to set the policy applicable for the various cryptographic back-ends, such as SSL/TLS libraries. The configured cryptographic policies will be the default policy used by these backends unless the application user configures them otherwise. When the system has been configured to use the centralized cryptographic policies, the administrator is assured that any application that utilizes the supported backends will follow a policy that adheres to the configured profile. Currently the supported backends are:

  • GnuTLS library
  • OpenSSL library
  • NSS library
  • OpenJDK
  • Libkrb5
  • BIND
  • OpenSSH
Applications and languages which rely on any of these backends will follow the system policies as well. Examples are apache httpd, nginx, php, and others.

contains 4 rules

Configure System Cryptography Policy   [ref]rule

To configure the system cryptography policy to use ciphers only from the FIPS policy, create a MachineConfig as follows:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 50-master-configure-crypto-policy
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
        - name: configure-crypto-policy.service
          enabled: true
          contents: |
            [Unit]
            Before=kubelet.service
            [Service]
            Type=oneshot
            ExecStart=update-crypto-policies --set FIPS
            RemainAfterExit=yes
            [Install]
            WantedBy=multi-user.target

This will configure the crypto policy appropriately in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

The rule checks if settings for selected crypto policy are configured as expected. Configuration files in the /etc/crypto-policies/back-ends are either symlinks to correct files provided by Crypto-policies package or they are regular files in case crypto policy customizations are applied. Crypto policies may be customized by crypto policy modules, in which case it is delimited from the base policy using a colon.

Warning:  The system needs to be rebooted for these changes to take effect.
Warning:  System Crypto Modules must be provided by a vendor that undergoes FIPS-140 certifications. FIPS-140 is applicable to all Federal agencies that use cryptographic-based security systems to protect sensitive information in computer and telecommunication systems (including voice systems) as defined in Section 5131 of the Information Technology Management Reform Act of 1996, Public Law 104-106. This standard shall be used in designing and implementing cryptographic modules that Federal departments and agencies operate or are operated for them under contract. See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf To meet this, the system has to have cryptographic software provided by a vendor that has undergone this certification. This means providing documentation, test results, design information, and independent third party review by an accredited lab. While open source software is capable of meeting this, it does not meet FIPS-140 unless the vendor submits to this process.
Rationale:

Centralized cryptographic policies simplify applying secure ciphers across an operating system and the applications that run on that operating system. Use of weak or untested encryption algorithms undermines the purposes of utilizing encryption to protect data.

Severity:  high

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
        - name: configure-crypto-policy.service
          enabled: true
          contents: |
            [Unit]
            Before=kubelet.service
            [Service]
            Type=oneshot
            ExecStart=update-crypto-policies --set {{.var_system_crypto_policy}}
            RemainAfterExit=yes
            [Install]
            WantedBy=multi-user.target

Configure Kerberos to use System Crypto Policy   [ref]rule

Crypto Policies provide a centralized control over crypto algorithms usage of many packages. Kerberos is supported by crypto policy, but it's configuration may be set up to ignore it. To check that Crypto Policies settings for Kerberos are configured correctly, examine that there is a symlink at /etc/krb5.conf.d/crypto-policies targeting /etc/cypto-policies/back-ends/krb5.config. If the symlink exists, Kerberos is configured to use the system-wide crypto policy settings.

Rationale:

Overriding the system crypto policy makes the behavior of Kerberos violate expectations, and makes system configuration more fragmented.

Severity:  high

Configure OpenSSL library to use System Crypto Policy   [ref]rule

Crypto Policies provide a centralized control over crypto algorithms usage of many packages. OpenSSL is supported by crypto policy, but the OpenSSL configuration may be set up to ignore it. To check that Crypto Policies settings are configured correctly, you have to examine the OpenSSL config file available under /etc/pki/tls/openssl.cnf. This file has the ini format, and it enables crypto policy support if there is a [ crypto_policy ] section that contains the .include /etc/crypto-policies/back-ends/opensslcnf.config directive.

Rationale:

Overriding the system crypto policy makes the behavior of the Java runtime violates expectations, and makes system configuration more fragmented.

Severity:  medium

Configure SSH to use System Crypto Policy   [ref]rule

Crypto Policies provide a centralized control over crypto algorithms usage of many packages. SSH is supported by crypto policy, but the SSH configuration may be set up to ignore it. To check that Crypto Policies settings are configured correctly, ensure that the CRYPTO_POLICY variable is either commented or not set at all in the /etc/sysconfig/sshd.

Rationale:

Overriding the system crypto policy makes the behavior of the SSH service violate expectations, and makes system configuration more fragmented.

Severity:  medium

Disk Partitioning   [ref]group

To ensure separation and protection of data, there are top-level system directories which should be placed on their own physical partition or logical volume. The installer's default partitioning scheme creates separate logical volumes for /, /boot, and swap.

  • If starting with any of the default layouts, check the box to \"Review and modify partitioning.\" This allows for the easy creation of additional logical volumes inside the volume group already created, though it may require making /'s logical volume smaller to create space. In general, using logical volumes is preferable to using partitions because they can be more easily adjusted later.
  • If creating a custom layout, create the partitions mentioned in the previous paragraph (which the installer will require anyway), as well as separate ones described in the following sections.
If a system has already been installed, and the default partitioning scheme was used, it is possible but nontrivial to modify it to create separate logical volumes for the directories listed above. The Logical Volume Manager (LVM) makes this possible.

contains 2 rules

Ensure /var/log Located On Separate Partition   [ref]rule

System logs are stored in the /var/log directory.

Partitioning Red Hat CoreOS is a Day 1 operation and cannot be changed afterwards. For documentation on how to add a MachineConfig manifest that specifies a separate /var/log partition, follow: https://docs.openshift.com/container-platform/latest/installing/installing_platform_agnostic/installing-platform-agnostic.html#installation-user-infra-machines-advanced_disk_installing-platform-agnostic

Note that the Red Hat OpenShift documentation often references a block device, such as /dev/vda. The name of the available block devices depends on the underlying infrastructure (bare metal vs cloud), and often the specific instance type. For example in AWS, some instance types have NVMe drives (/dev/nvme*), others use /dev/xvda*. You will need to look for relevant documentation for your infrastructure around this. In many cases, the simplest thing is to boot a single machine with an Ignition configuration that just gives you SSH access, and inspect the block devices via e.g. the lsblk command. For physical hardware, a good best practice is to reference devices via the /dev/disk/by-id/ or /dev/disk/by-path links.

Rationale:

Placing /var/log in its own partition enables better separation between log files and other files in /var/.

Severity:  low

Ensure /var/log/audit Located On Separate Partition   [ref]rule

Audit logs are stored in the /var/log/audit directory.

Partitioning Red Hat CoreOS is a Day 1 operation and cannot be changed afterwards. For documentation on how to add a MachineConfig manifest that specifies a separate /var/log/audit partition, follow: https://docs.openshift.com/container-platform/latest/installing/installing_platform_agnostic/installing-platform-agnostic.html#installation-user-infra-machines-advanced_disk_installing-platform-agnostic

Note that the Red Hat OpenShift documentation often references a block device, such as /dev/vda. The name of the available block devices depends on the underlying infrastructure (bare metal vs cloud), and often the specific instance type. For example in AWS, some instance types have NVMe drives (/dev/nvme*), others use /dev/xvda*. You will need to look for relevant documentation for your infrastructure around this. In many cases, the simplest thing is to boot a single machine with an Ignition configuration that just gives you SSH access, and inspect the block devices via e.g. the lsblk command. For physical hardware, a good best practice is to reference devices via the /dev/disk/by-id/ or /dev/disk/by-path links.

Make absolutely certain that it is large enough to store all audit logs that will be created by the auditing daemon.

Rationale:

Placing /var/log/audit in its own partition enables better separation between audit files and other files, and helps ensure that auditing cannot be halted due to the partition running out of space.

Severity:  low

Sudo   [ref]group

Sudo, which stands for "su 'do'", provides the ability to delegate authority to certain users, groups of users, or system administrators. When configured for system users and/or groups, Sudo can allow a user or group to execute privileged commands that normally only root is allowed to execute.

For more information on Sudo and addition Sudo configuration options, see https://www.sudo.ws.

contains 1 rule

Install sudo Package   [ref]rule

The sudo package can be installed with the following command:

$ sudo dnf install sudo

Rationale:

sudo is a program designed to allow a system administrator to give limited root privileges to users and log root activity. The basic philosophy is to give as few privileges as possible but still allow system users to get their work done.

Severity:  medium

Identifiers:  CCE-82523-2

References:  CCI-002235, 1382, 1384, 1386, CM-6(a), FMT_MOF_EXT.1, SRG-OS-000324-GPOS-00125, R33, 2.2.6, 2.2

Account and Access Control   [ref]group

In traditional Unix security, if an attacker gains shell access to a certain login account, they can perform any action or access any file to which that account has access. Therefore, making it more difficult for unauthorized people to gain shell access to accounts, particularly to privileged accounts, is a necessary part of securing a system. This section introduces mechanisms for restricting access to accounts under Red Hat Enterprise Linux CoreOS 4.

contains 12 rules

Warning Banners for System Accesses   [ref]group

Each system should expose as little information about itself as possible.

System banners, which are typically displayed just before a login prompt, give out information about the service or the host's operating system. This might include the distribution name and the system kernel version, and the particular version of a network service. This information can assist intruders in gaining access to the system as it can reveal whether the system is running vulnerable software. Most network services can be configured to limit what information is displayed.

Many organizations implement security policies that require a system banner provide notice of the system's ownership, provide warning to unauthorized users, and remind authorized users of their consent to monitoring.

contains 1 rule

Modify the System Login Banner   [ref]rule

To configure the system login banner create a file under /etc/issue.d The Machine Configuration provided with this rule is generic. You may need to adjust it accordingly to fit your usecase. The DoD required text is either:

You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only. By using this IS (which includes any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls) to protect USG interests -- not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.


OR:

I've read & consent to terms in IS user agreem't.

To address this, please create a MachineConfig object with the appropriate text in a drop-in file in /etc/issue.d/. You can also use the supplied remediation, which will be available based on scan results using `oc get remediations`. The default remediation is opinionated and you may need to adjust the MachineConfig accordingly for your use case. Do not try to edit /etc/issue directly as this is a symlink provided by the Operating System.

For example, if you're using the DoD required text, the manifest would look as follows:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-etc-issue
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,You%20are%20accessing%20a%20U.S.%20Government%20%28USG%29%20Information%20System%20%28IS%29%20that%20is%20%0Aprovided%20for%20USG-authorized%20use%20only.%20By%20using%20this%20IS%20%28which%20includes%20any%20%0Adevice%20attached%20to%20this%20IS%29%2C%20you%20consent%20to%20the%20following%20conditions%3A%0A%0A-The%20USG%20routinely%20intercepts%20and%20monitors%20communications%20on%20this%20IS%20for%20%0Apurposes%20including%2C%20but%20not%20limited%20to%2C%20penetration%20testing%2C%20COMSEC%20monitoring%2C%20%0Anetwork%20operations%20and%20defense%2C%20personnel%20misconduct%20%28PM%29%2C%20law%20enforcement%20%0A%28LE%29%2C%20and%20counterintelligence%20%28CI%29%20investigations.%0A%0A-At%20any%20time%2C%20the%20USG%20may%20inspect%20and%20seize%20data%20stored%20on%20this%20IS.%0A%0A-Communications%20using%2C%20or%20data%20stored%20on%2C%20this%20IS%20are%20not%20private%2C%20are%20subject%20%0Ato%20routine%20monitoring%2C%20interception%2C%20and%20search%2C%20and%20may%20be%20disclosed%20or%20used%20%0Afor%20any%20USG-authorized%20purpose.%0A%0A-This%20IS%20includes%20security%20measures%20%28e.g.%2C%20authentication%20and%20access%20controls%29%20%0Ato%20protect%20USG%20interests--not%20for%20your%20personal%20benefit%20or%20privacy.%0A%0A-Notwithstanding%20the%20above%2C%20using%20this%20IS%20does%20not%20constitute%20consent%20to%20PM%2C%20LE%20%0Aor%20CI%20investigative%20searching%20or%20monitoring%20of%20the%20content%20of%20privileged%20%0Acommunications%2C%20or%20work%20product%2C%20related%20to%20personal%20representation%20or%20services%20%0Aby%20attorneys%2C%20psychotherapists%2C%20or%20clergy%2C%20and%20their%20assistants.%20Such%20%0Acommunications%20and%20work%20product%20are%20private%20and%20confidential.%20See%20User%20%0AAgreement%20for%20details.
        mode: 0644
        path: /etc/issue.d/legal-notice
        overwrite: true

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

Display of a standardized and approved use notification before granting access to the operating system ensures privacy and security notification verbiage used is consistent with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and guidance.

System use notifications are required only for access via login interfaces with human users and are not required when such human interfaces do not exist.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
    machineconfiguration.openshift.io/role: worker
  name: 75-banner-etc-issue
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,You%20are%20accessing%20a%20U.S.%20Government%20%28USG%29%20Information%20System%20%28IS%29%20that%20is%20%0Aprovided%20for%20USG-authorized%20use%20only.%20By%20using%20this%20IS%20%28which%20includes%20any%20%0Adevice%20attached%20to%20this%20IS%29%2C%20you%20consent%20to%20the%20following%20conditions%3A%0A%0A-The%20USG%20routinely%20intercepts%20and%20monitors%20communications%20on%20this%20IS%20for%20%0Apurposes%20including%2C%20but%20not%20limited%20to%2C%20penetration%20testing%2C%20COMSEC%20monitoring%2C%20%0Anetwork%20operations%20and%20defense%2C%20personnel%20misconduct%20%28PM%29%2C%20law%20enforcement%20%0A%28LE%29%2C%20and%20counterintelligence%20%28CI%29%20investigations.%0A%0A-At%20any%20time%2C%20the%20USG%20may%20inspect%20and%20seize%20data%20stored%20on%20this%20IS.%0A%0A-Communications%20using%2C%20or%20data%20stored%20on%2C%20this%20IS%20are%20not%20private%2C%20are%20subject%20%0Ato%20routine%20monitoring%2C%20interception%2C%20and%20search%2C%20and%20may%20be%20disclosed%20or%20used%20%0Afor%20any%20USG-authorized%20purpose.%0A%0A-This%20IS%20includes%20security%20measures%20%28e.g.%2C%20authentication%20and%20access%20controls%29%20%0Ato%20protect%20USG%20interests--not%20for%20your%20personal%20benefit%20or%20privacy.%0A%0A-Notwithstanding%20the%20above%2C%20using%20this%20IS%20does%20not%20constitute%20consent%20to%20PM%2C%20LE%20%0Aor%20CI%20investigative%20searching%20or%20monitoring%20of%20the%20content%20of%20privileged%20%0Acommunications%2C%20or%20work%20product%2C%20related%20to%20personal%20representation%20or%20services%20%0Aby%20attorneys%2C%20psychotherapists%2C%20or%20clergy%2C%20and%20their%20assistants.%20Such%20%0Acommunications%20and%20work%20product%20are%20private%20and%20confidential.%20See%20User%20%0AAgreement%20for%20details.
        mode: 0644
        path: /etc/issue.d/legal-notice
        overwrite: true

Protect Physical Console Access   [ref]group

It is impossible to fully protect a system from an attacker with physical access, so securing the space in which the system is located should be considered a necessary step. However, there are some steps which, if taken, make it more difficult for an attacker to quickly or undetectably modify a system from its console.

contains 6 rules

Configure Screen Locking   [ref]group

When a user must temporarily leave an account logged-in, screen locking should be employed to prevent passersby from abusing the account. User education and training is particularly important for screen locking to be effective, and policies can be implemented to reinforce this.

Automatic screen locking is only meant as a safeguard for those cases where a user forgot to lock the screen.

contains 1 rule

Configure Console Screen Locking   [ref]group

A console screen locking mechanism is a temporary action taken when a user stops work and moves away from the immediate physical vicinity of the information system but does not logout because of the temporary nature of the absence. Rather than relying on the user to manually lock their operation system session prior to vacating the vicinity, operating systems need to be able to identify when a user's session has idled and take action to initiate the session lock.

contains 1 rule

Prevent user from disabling the screen lock   [ref]rule

The tmux terminal multiplexer is used to implement automatic session locking. It should not be listed in /etc/shells.

Rationale:

Not listing tmux among permitted shells prevents malicious program running as user from lowering security by disabling the screen lock.

Severity:  low

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,/bin/sh%0A/bin/bash%0A/usr/bin/sh%0A/usr/bin/bash%0A
        mode: 0644
        path: /etc/shells
        overwrite: true

Disable debug-shell SystemD Service   [ref]rule

SystemD's debug-shell service is intended to diagnose SystemD related boot issues with various systemctl commands. Once enabled and following a system reboot, the root shell will be available on tty9 which is access by pressing CTRL-ALT-F9. The debug-shell service should only be used for SystemD related issues and should otherwise be disabled.

By default, the debug-shell SystemD service is already disabled. The debug-shell service can be disabled with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-debug-shell-disable
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: debug-shell.service
        enabled: false
        mask: true
      - name: debug-shell.socket
        enabled: false
        mask: true

This will disable the debug-shell service in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

This prevents attackers with physical access from trivially bypassing security on the machine through valid troubleshooting configurations and gaining root access when the system is rebooted.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: debug-shell.service
        enabled: false
        mask: true
      - name: debug-shell.socket
        enabled: false
        mask: true
Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: debug-shell.service
        enabled: false
        mask: true
      - name: debug-shell.socket
        enabled: false
        mask: true

Verify that Interactive Boot is Disabled   [ref]rule

Red Hat Enterprise Linux CoreOS 4 systems support an "interactive boot" option that can be used to prevent services from being started. On a Red Hat Enterprise Linux CoreOS 4 system, interactive boot can be enabled by providing a 1, yes, true, or on value to the systemd.confirm_spawn kernel argument.

Rationale:

Using interactive boot, the console user could disable auditing, firewalls, or other services, weakening system security.

Severity:  medium

Disable Ctrl-Alt-Del Burst Action   [ref]rule

By default, SystemD will reboot the system if the Ctrl-Alt-Del key sequence is pressed Ctrl-Alt-Delete more than 7 times in 2 seconds.

To configure the system to ignore the CtrlAltDelBurstAction setting, create a MachineConfig similar to the following:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-disable-ctrlaltdel-burstaction
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,CtrlAltDelBurstAction%3Dnone
        mode: 0644
        path: /etc/systemd/system.conf.d/disable_ctrlaltdelete_burstaction.conf
        overwrite: true
EOF

This will add the relevant configuration to /etc/systemd/system.conf.d/, thus configuring Systemd apropriately.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Warning:  Disabling the Ctrl-Alt-Del key sequence in /etc/init/control-alt-delete.conf DOES NOT disable the Ctrl-Alt-Del key sequence if running in runlevel 6 (e.g. in GNOME, KDE, etc.)! The Ctrl-Alt-Del key sequence will only be disabled if running in the non-graphical runlevel 3.
Rationale:

A locally logged-in user who presses Ctrl-Alt-Del, when at the console, can reboot the system. If accidentally pressed, as could happen in the case of mixed OS environment, this can create the risk of short-term loss of availability of systems due to unintentional reboot.

Severity:  high

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,CtrlAltDelBurstAction%3Dnone
        mode: 0644
        path: /etc/systemd/system.conf.d/disable_ctrlaltdelete_burstaction.conf
        overwrite: true

Disable Ctrl-Alt-Del Reboot Activation   [ref]rule

By default, SystemD will reboot the system if the Ctrl-Alt-Del key sequence is pressed.

To configure the system to ignore the Ctrl-Alt-Del key sequence from the command line instead of rebooting the system, create a MachineConfig similar to the following:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-disable-ctrlaltdel-reboot
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: ctrl-alt-del.target
        mask: true
EOF

This will mask the ctrl-alt-del.target systemd target for all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

A locally logged-in user who presses Ctrl-Alt-Del, when at the console, can reboot the system. If accidentally pressed, as could happen in the case of mixed OS environment, this can create the risk of short-term loss of availability of systems due to unintentional reboot.

Severity:  high

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: ctrl-alt-del.target
        mask: true

Require Authentication for Single User Mode   [ref]rule

Single-user mode is intended as a system recovery method, providing a single user root access to the system by providing a boot option at startup.

By default, single-user mode is protected by requiring a password and is set in /usr/lib/systemd/system/rescue.service.

Rationale:

This prevents attackers with physical access from trivially bypassing security on the machine and gaining root access. Such accesses are further prevented by configuring the bootloader password.

Severity:  medium

Protect Accounts by Restricting Password-Based Login   [ref]group

Conventionally, Unix shell accounts are accessed by providing a username and password to a login program, which tests these values for correctness using the /etc/passwd and /etc/shadow files. Password-based login is vulnerable to guessing of weak passwords, and to sniffing and man-in-the-middle attacks against passwords entered over a network or at an insecure console. Therefore, mechanisms for accessing accounts by entering usernames and passwords should be restricted to those which are operationally necessary.

contains 5 rules

Verify Proper Storage and Existence of Password Hashes   [ref]group

By default, password hashes for local accounts are stored in the second field (colon-separated) in /etc/shadow. This file should be readable only by processes running with root credentials, preventing users from casually accessing others' password hashes and attempting to crack them. However, it remains possible to misconfigure the system and store password hashes in world-readable files such as /etc/passwd, or to even store passwords themselves in plaintext on the system. Using system-provided tools for password change/creation should allow administrators to avoid such misconfiguration.

contains 2 rules

Prevent Login to Accounts With Empty Password   [ref]rule

If an account is configured for password authentication but does not have an assigned password, it may be possible to log into the account without authentication. Remove any instances of the nullok in /etc/pam.d/system-auth and /etc/pam.d/password-auth to prevent logins with empty passwords.

Warning:  If the system relies on authselect tool to manage PAM settings, the remediation will also use authselect tool. However, if any manual modification was made in PAM files, the authselect integrity check will fail and the remediation will be aborted in order to preserve intentional changes. In this case, an informative message will be shown in the remediation report. Note that this rule is not applicable for systems running within a container. Having user with empty password within a container is not considered a risk, because it should not be possible to directly login into a container anyway.
Rationale:

If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments.

Severity:  high

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,%23%20Generated%20by%20authselect%20on%20Sat%20Oct%2027%2014%3A59%3A36%202018%0A%23%20Do%20not%20modify%20this%20file%20manually.%0A%0Aauth%20%20%20%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_env.so%0Aauth%20%20%20%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_faildelay.so%20delay%3D2000000%0Aauth%20%20%20%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_fprintd.so%0Aauth%20%20%20%20%20%20%20%20%5Bdefault%3D1%20ignore%3Dignore%20success%3Dok%5D%20%20%20%20%20%20%20%20%20pam_succeed_if.so%20uid%20%3E%3D%201000%20quiet%0Aauth%20%20%20%20%20%20%20%20%5Bdefault%3D1%20ignore%3Dignore%20success%3Dok%5D%20%20%20%20%20%20%20%20%20pam_localuser.so%0Aauth%20%20%20%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_unix.so%20try_first_pass%0Aauth%20%20%20%20%20%20%20%20requisite%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_succeed_if.so%20uid%20%3E%3D%201000%20quiet_success%0Aauth%20%20%20%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_sss.so%20forward_pass%0Aauth%20%20%20%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_deny.so%0A%0Aaccount%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_unix.so%0Aaccount%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_localuser.so%0Aaccount%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_succeed_if.so%20uid%20%3C%201000%20quiet%0Aaccount%20%20%20%20%20%5Bdefault%3Dbad%20success%3Dok%20user_unknown%3Dignore%5D%20pam_sss.so%0Aaccount%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_permit.so%0A%0Apassword%20%20%20%20requisite%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_pwquality.so%20try_first_pass%20local_users_only%0Apassword%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_unix.so%20sha512%20shadow%20try_first_pass%20use_authtok%0Apassword%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_sss.so%20use_authtok%0Apassword%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_deny.so%0A%0Asession%20%20%20%20%20optional%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_keyinit.so%20revoke%0Asession%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_limits.so%0A-session%20%20%20%20optional%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_systemd.so%0Asession%20%20%20%20%20%5Bsuccess%3D1%20default%3Dignore%5D%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_succeed_if.so%20service%20in%20crond%20quiet%20use_uid%0Asession%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_unix.so%0Asession%20%20%20%20%20optional%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_sss.so%0A
        mode: 0644
        path: /etc/pam.d/password-auth
        overwrite: true
      - contents:
          source: data:,%23%20Generated%20by%20authselect%20on%20Sat%20Oct%2027%2014%3A59%3A36%202018%0A%23%20Do%20not%20modify%20this%20file%20manually.%0A%0Aauth%20%20%20%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_env.so%0Aauth%20%20%20%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_faildelay.so%20delay%3D2000000%0Aauth%20%20%20%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_fprintd.so%0Aauth%20%20%20%20%20%20%20%20%5Bdefault%3D1%20ignore%3Dignore%20success%3Dok%5D%20%20%20%20%20%20%20%20%20pam_succeed_if.so%20uid%20%3E%3D%201000%20quiet%0Aauth%20%20%20%20%20%20%20%20%5Bdefault%3D1%20ignore%3Dignore%20success%3Dok%5D%20%20%20%20%20%20%20%20%20pam_localuser.so%0Aauth%20%20%20%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_unix.so%20try_first_pass%0Aauth%20%20%20%20%20%20%20%20requisite%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_succeed_if.so%20uid%20%3E%3D%201000%20quiet_success%0Aauth%20%20%20%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_sss.so%20forward_pass%0Aauth%20%20%20%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_deny.so%0A%0Aaccount%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_unix.so%0Aaccount%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_localuser.so%0Aaccount%20%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_succeed_if.so%20uid%20%3C%201000%20quiet%0Aaccount%20%20%20%20%20%5Bdefault%3Dbad%20success%3Dok%20user_unknown%3Dignore%5D%20pam_sss.so%0Aaccount%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_permit.so%0A%0Apassword%20%20%20%20requisite%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_pwquality.so%20try_first_pass%20local_users_only%0Apassword%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_unix.so%20sha512%20shadow%20try_first_pass%20use_authtok%0Apassword%20%20%20%20sufficient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_sss.so%20use_authtok%0Apassword%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_deny.so%0A%0Asession%20%20%20%20%20optional%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_keyinit.so%20revoke%0Asession%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_limits.so%0A-session%20%20%20%20optional%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_systemd.so%0Asession%20%20%20%20%20%5Bsuccess%3D1%20default%3Dignore%5D%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_succeed_if.so%20service%20in%20crond%20quiet%20use_uid%0Asession%20%20%20%20%20required%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_unix.so%0Asession%20%20%20%20%20optional%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20pam_sss.so%0A
        mode: 0644
        path: /etc/pam.d/system-auth
        overwrite: true

Verify No netrc Files Exist   [ref]rule

The .netrc files contain login information used to auto-login into FTP servers and reside in the user's home directory. These files may contain unencrypted passwords to remote FTP servers making them susceptible to access by unauthorized users and should not be used. Any .netrc files should be removed.

Rationale:

Unencrypted passwords for remote FTP servers may be stored in .netrc files.

Severity:  medium

Restrict Root Logins   [ref]group

Direct root logins should be allowed only for emergency use. In normal situations, the administrator should access the system via a unique unprivileged account, and then use su or sudo to execute privileged commands. Discouraging administrators from accessing the root account directly ensures an audit trail in organizations with multiple administrators. Locking down the channels through which root can connect directly also reduces opportunities for password-guessing against the root account. The login program uses the file /etc/securetty to determine which interfaces should allow root logins. The virtual devices /dev/console and /dev/tty* represent the system consoles (accessible via the Ctrl-Alt-F1 through Ctrl-Alt-F6 keyboard sequences on a default installation). The default securetty file also contains /dev/vc/*. These are likely to be deprecated in most environments, but may be retained for compatibility. Root should also be prohibited from connecting via network protocols. Other sections of this document include guidance describing how to prevent root from logging in via SSH.

contains 3 rules

Verify Only Root Has UID 0   [ref]rule

If any account other than root has a UID of 0, this misconfiguration should be investigated and the accounts other than root should be removed or have their UID changed.
If the account is associated with system commands or applications the UID should be changed to one greater than "0" but less than "1000." Otherwise assign a UID greater than "1000" that has not already been assigned.

Rationale:

An account has root authority if it has a UID of 0. Multiple accounts with a UID of 0 afford more opportunity for potential intruders to guess a password for a privileged account. Proper configuration of sudo is recommended to afford multiple system administrators access to root privileges in an accountable manner.

Severity:  high

Direct root Logins Not Allowed   [ref]rule

To further limit access to the root account, administrators can disable root logins at the console by editing the /etc/securetty file. This file lists all devices the root user is allowed to login to. If the file does not exist at all, the root user can login through any communication device on the system, whether via the console or via a raw network interface. This is dangerous as user can login to the system as root via Telnet, which sends the password in plain text over the network. By default, Red Hat Enterprise Linux CoreOS 4's /etc/securetty file only allows the root user to login at the console physically attached to the system. To prevent root from logging in, remove the contents of this file. To prevent direct root logins, remove the contents of this file by typing the following command:

$ sudo echo > /etc/securetty

Warning:  This rule only checks the /etc/securetty file existence and its content. If you need to restrict user access using the /etc/securetty file, make sure the pam_securetty.so PAM module is properly enabled in relevant PAM files.
Rationale:

Disabling direct root logins ensures proper accountability and multifactor authentication to privileged accounts. Users will first login, then escalate to privileged (root) access via su / sudo. This is required for FISMA Low and FISMA Moderate systems.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,
        mode: 0600
        path: /etc/securetty
        overwrite: true

Ensure that System Accounts Do Not Run a Shell Upon Login   [ref]rule

Some accounts are not associated with a human user of the system, and exist to perform some administrative functions. Should an attacker be able to log into these accounts, they should not be granted access to a shell.

The login shell for each local account is stored in the last field of each line in /etc/passwd. System accounts are those user accounts with a user ID less than 1000. The user ID is stored in the third field. If any system account other than root has a login shell, disable it with the command:

$ sudo usermod -s /sbin/nologin account

Warning:  Do not perform the steps in this section on the root account. Doing so might cause the system to become inaccessible.
Rationale:

Ensuring shells are not given to system accounts upon login makes it more difficult for attackers to make use of system accounts.

Severity:  medium

GRUB2 bootloader configuration   [ref]group

During the boot process, the boot loader is responsible for starting the execution of the kernel and passing options to it. The boot loader allows for the selection of different kernels - possibly on different partitions or media. The default Red Hat Enterprise Linux CoreOS 4 boot loader for x86 systems is called GRUB2. Options it can pass to the kernel include single-user mode, which provides root access without any authentication, and the ability to disable SELinux. To prevent local users from modifying the boot parameters and endangering security, protect the boot loader configuration with a password and ensure its configuration file's permissions are set properly.

contains 2 rules

Enable Kernel Page-Table Isolation (KPTI)   [ref]rule

To enable Kernel page-table isolation, add the argument pti=on to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

Kernel page-table isolation is a kernel feature that mitigates the Meltdown security vulnerability and hardens the kernel against attempts to bypass kernel address space layout randomization (KASLR).

Severity:  high

Identifiers:  CCE-82497-9

References:  SI-16, SRG-OS-000433-GPOS-00193

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - pti=on

Disable vsyscalls   [ref]rule

To disable use of virtual syscalls, add the argument vsyscall=none to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

Virtual Syscalls provide an opportunity of attack for a user who has control of the return instruction pointer.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - vsyscall=none

Configure Syslog   [ref]group

The syslog service has been the default Unix logging mechanism for many years. It has a number of downsides, including inconsistent log format, lack of authentication for received messages, and lack of authentication, encryption, or reliable transport for messages sent over a network. However, due to its long history, syslog is a de facto standard which is supported by almost all Unix applications.

In Red Hat Enterprise Linux CoreOS 4, rsyslog has replaced ksyslogd as the syslog daemon of choice, and it includes some additional security features such as reliable, connection-oriented (i.e. TCP) transmission of logs, the option to log to database formats, and the encryption of log data en route to a central logging server. This section discusses how to configure rsyslog for best effect, and how to use tools provided with the system to maintain and monitor logs.

contains 1 rule

Ensure All Logs are Rotated by logrotate   [ref]group

Edit the file /etc/logrotate.d/syslog. Find the first line, which should look like this (wrapped for clarity):

/var/log/messages /var/log/secure /var/log/maillog /var/log/spooler \
  /var/log/boot.log /var/log/cron {
Edit this line so that it contains a one-space-separated listing of each log file referenced in /etc/rsyslog.conf.

All logs in use on a system must be rotated regularly, or the log files will consume disk space over time, eventually interfering with system operation. The file /etc/logrotate.d/syslog is the configuration file used by the logrotate program to maintain all log files written by syslog. By default, it rotates logs weekly and stores four archival copies of each log. These settings can be modified by editing /etc/logrotate.conf, but the defaults are sufficient for purposes of this guide.

Note that logrotate is run nightly by the cron job /etc/cron.daily/logrotate. If particularly active logs need to be rotated more often than once a day, some other mechanism must be used.

contains 1 rule

Ensure Logrotate Runs Periodically   [ref]rule

The logrotate utility allows for the automatic rotation of log files. The frequency of rotation is specified in /etc/logrotate.conf, which triggers a cron task or a timer. To configure logrotate to run daily, add or correct the following line in /etc/logrotate.conf:

# rotate log files frequency
daily

Rationale:

Log files that are not properly rotated run the risk of growing so large that they fill up the /var/log partition. Valuable logging information could be lost if the /var/log partition becomes full.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%20see%20%22man%20logrotate%22%20for%20details%0A%23%20rotate%20log%20files%20daily%0Adaily%0A%0A%23%20keep%204%20weeks%20worth%20of%20backlogs%0Arotate%2030%0A%0A%23%20create%20new%20%28empty%29%20log%20files%20after%20rotating%20old%20ones%0Acreate%0A%0A%23%20use%20date%20as%20a%20suffix%20of%20the%20rotated%20file%0Adateext%0A%0A%23%20uncomment%20this%20if%20you%20want%20your%20log%20files%20compressed%0A%23compress%0A%0A%23%20RPM%20packages%20drop%20log%20rotation%20information%20into%20this%20directory%0Ainclude%20/etc/logrotate.d%0A%0A%23%20system-specific%20logs%20may%20be%20also%20be%20configured%20here. }}
        mode: 0644
        path: /etc/logrotate.conf
        overwrite: true

Network Configuration and Firewalls   [ref]group

Most systems must be connected to a network of some sort, and this brings with it the substantial risk of network attack. This section discusses the security impact of decisions about networking which must be made when configuring a system.

This section also discusses firewalls, network access controls, and other network security frameworks, which allow system-level rules to be written that can limit an attackers' ability to connect to your system. These rules can specify that network traffic should be allowed or denied from certain IP addresses, hosts, and networks. The rules can also specify which of the system's network services are available to particular hosts or networks.

contains 36 rules

iptables and ip6tables   [ref]group

A host-based firewall called netfilter is included as part of the Linux kernel distributed with the system. It is activated by default. This firewall is controlled by the program iptables, and the entire capability is frequently referred to by this name. An analogous program called ip6tables handles filtering for IPv6.

Unlike TCP Wrappers, which depends on the network server program to support and respect the rules written, netfilter filtering occurs at the kernel level, before a program can even process the data from the network packet. As such, any program on the system is affected by the rules written.

This section provides basic information about strengthening the iptables and ip6tables configurations included with the system. For more complete information that may allow the construction of a sophisticated ruleset tailored to your environment, please consult the references at the end of this section.

contains 2 rules

Install iptables-nft Package   [ref]rule

The iptables-nft package can be installed with the following command:

$ sudo dnf install iptables-nft

Rationale:

iptables-nft controls the Linux kernel network packet filtering code. iptables-nft allows system operators to set up firewalls and IP masquerading, etc.

Severity:  medium

Identifiers:  CCE-86834-9

References:  CM-6(a)

Install iptables Package   [ref]rule

The iptables package can be installed with the following command:

$ sudo dnf install iptables

Rationale:

iptables controls the Linux kernel network packet filtering code. iptables allows system operators to set up firewalls and IP masquerading, etc.

Severity:  medium

Identifiers:  CCE-82522-4

References:  CM-6(a), Req-1.4.1, SRG-OS-000480-GPOS-00227

IPv6   [ref]group

The system includes support for Internet Protocol version 6. A major and often-mentioned improvement over IPv4 is its enormous increase in the number of available addresses. Another important feature is its support for automatic configuration of many network settings.

contains 6 rules

Configure IPv6 Settings if Necessary   [ref]group

A major feature of IPv6 is the extent to which systems implementing it can automatically configure their networking devices using information from the network. From a security perspective, manually configuring important configuration information is preferable to accepting it from the network in an unauthenticated fashion.

contains 6 rules

Configure Accepting Router Advertisements on All IPv6 Interfaces   [ref]rule

To set the runtime status of the net.ipv6.conf.all.accept_ra kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.all.accept_ra=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.all.accept_ra = 0

Rationale:

An illicit router advertisement message could result in a man-in-the-middle attack.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv6.conf.all.accept_ra%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv6_conf_all_accept_ra.conf
        overwrite: true

Disable Accepting ICMP Redirects for All IPv6 Interfaces   [ref]rule

To set the runtime status of the net.ipv6.conf.all.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.all.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.all.accept_redirects = 0

Rationale:

An illicit ICMP redirect message could result in a man-in-the-middle attack.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv6.conf.all.accept_redirects%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv6_conf_all_accept_redirects.conf
        overwrite: true

Disable Kernel Parameter for Accepting Source-Routed Packets on all IPv6 Interfaces   [ref]rule

To set the runtime status of the net.ipv6.conf.all.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.all.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.all.accept_source_route = 0

Rationale:

Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures. This requirement applies only to the forwarding of source-routerd traffic, such as when IPv6 forwarding is enabled and the system is functioning as a router.

Accepting source-routed packets in the IPv6 protocol has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv6.conf.all.accept_source_route%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv6_conf_all_accept_source_route.conf
        overwrite: true

Disable Accepting Router Advertisements on all IPv6 Interfaces by Default   [ref]rule

To set the runtime status of the net.ipv6.conf.default.accept_ra kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.default.accept_ra=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.default.accept_ra = 0

Rationale:

An illicit router advertisement message could result in a man-in-the-middle attack.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv6.conf.default.accept_ra%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv6_conf_default_accept_ra.conf
        overwrite: true

Disable Kernel Parameter for Accepting ICMP Redirects by Default on IPv6 Interfaces   [ref]rule

To set the runtime status of the net.ipv6.conf.default.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.default.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.default.accept_redirects = 0

Rationale:

An illicit ICMP redirect message could result in a man-in-the-middle attack.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv6.conf.default.accept_redirects%20%3D%200%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv6_conf_default_accept_redirects.conf
        overwrite: true

Disable Kernel Parameter for Accepting Source-Routed Packets on IPv6 Interfaces by Default   [ref]rule

To set the runtime status of the net.ipv6.conf.default.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.default.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.default.accept_source_route = 0

Rationale:

Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures. This requirement applies only to the forwarding of source-routerd traffic, such as when IPv6 forwarding is enabled and the system is functioning as a router. Accepting source-routed packets in the IPv6 protocol has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv6.conf.default.accept_source_route%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv6_conf_default_accept_source_route.conf
        overwrite: true

Kernel Parameters Which Affect Networking   [ref]group

The sysctl utility is used to set parameters which affect the operation of the Linux kernel. Kernel parameters which affect networking and have security implications are described here.

contains 15 rules

Network Related Kernel Runtime Parameters for Hosts and Routers   [ref]group

Certain kernel parameters should be set for systems which are acting as either hosts or routers to improve the system's ability defend against certain types of IPv4 protocol attacks.

contains 13 rules

Disable Accepting ICMP Redirects for All IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.accept_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages modify the host's route table and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required."

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.all.accept_redirects%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_all_accept_redirects.conf
        overwrite: true

Disable Kernel Parameter for Accepting Source-Routed Packets on all IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.accept_source_route = 0

Rationale:

Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures. This requirement applies only to the forwarding of source-routerd traffic, such as when IPv4 forwarding is enabled and the system is functioning as a router.

Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.all.accept_source_route%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_all_accept_source_route.conf
        overwrite: true

Enable Kernel Parameter to Log Martian Packets on all IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.log_martians kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.log_martians=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.log_martians = 1

Rationale:

The presence of "martian" packets (which have impossible addresses) as well as spoofed packets, source-routed packets, and redirects could be a sign of nefarious network activity. Logging these packets enables this activity to be detected.

Severity:  unknown

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.all.log_martians%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_all_log_martians.conf
        overwrite: true

Enable Kernel Parameter to Use Reverse Path Filtering on all IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.rp_filter kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.rp_filter=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.rp_filter = 1

Rationale:

Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.all.rp_filter%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_all_rp_filter.conf
        overwrite: true

Disable Kernel Parameter for Accepting Secure ICMP Redirects on all IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.secure_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.secure_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.secure_redirects = 0

Rationale:

Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.all.secure_redirects%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_all_secure_redirects.conf
        overwrite: true

Disable Kernel Parameter for Accepting ICMP Redirects by Default on IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.accept_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages modify the host's route table and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.default.accept_redirects%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_default_accept_redirects.conf
        overwrite: true

Disable Kernel Parameter for Accepting Source-Routed Packets on IPv4 Interfaces by Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.accept_source_route = 0

Rationale:

Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures.
Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required, such as when IPv4 forwarding is enabled and the system is legitimately functioning as a router.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.default.accept_source_route%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_default_accept_source_route.conf
        overwrite: true

Enable Kernel Paremeter to Log Martian Packets on all IPv4 Interfaces by Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.log_martians kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.log_martians=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.log_martians = 1

Rationale:

The presence of "martian" packets (which have impossible addresses) as well as spoofed packets, source-routed packets, and redirects could be a sign of nefarious network activity. Logging these packets enables this activity to be detected.

Severity:  unknown

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.default.log_martians%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_default_log_martians.conf
        overwrite: true

Enable Kernel Parameter to Use Reverse Path Filtering on all IPv4 Interfaces by Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.rp_filter kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.rp_filter=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.rp_filter = 1

Rationale:

Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.default.rp_filter%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_default_rp_filter.conf
        overwrite: true

Configure Kernel Parameter for Accepting Secure Redirects By Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.secure_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.secure_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.secure_redirects = 0

Rationale:

Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.default.secure_redirects%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_default_secure_redirects.conf
        overwrite: true

Enable Kernel Parameter to Ignore ICMP Broadcast Echo Requests on IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.icmp_echo_ignore_broadcasts kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.icmp_echo_ignore_broadcasts = 1

Rationale:

Responding to broadcast (ICMP) echoes facilitates network mapping and provides a vector for amplification attacks.
Ignoring ICMP echo requests (pings) sent to broadcast or multicast addresses makes the system slightly more difficult to enumerate on the network.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.icmp_echo_ignore_broadcasts%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_icmp_echo_ignore_broadcasts.conf
        overwrite: true

Enable Kernel Parameter to Ignore Bogus ICMP Error Responses on IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.icmp_ignore_bogus_error_responses kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.icmp_ignore_bogus_error_responses=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.icmp_ignore_bogus_error_responses = 1

Rationale:

Ignoring bogus ICMP error responses reduces log size, although some activity would not be logged.

Severity:  unknown

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.icmp_ignore_bogus_error_responses%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_icmp_ignore_bogus_error_responses.conf
        overwrite: true

Enable Kernel Parameter to Use TCP Syncookies on Network Interfaces   [ref]rule

To set the runtime status of the net.ipv4.tcp_syncookies kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.tcp_syncookies=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.tcp_syncookies = 1

Rationale:

A TCP SYN flood attack can cause a denial of service by filling a system's TCP connection table with connections in the SYN_RCVD state. Syncookies can be used to track a connection when a subsequent ACK is received, verifying the initiator is attempting a valid connection and is not a flood source. This feature is activated when a flood condition is detected, and enables the system to continue servicing valid connection requests.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.tcp_syncookies%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_tcp_syncookies.conf
        overwrite: true

Network Parameters for Hosts Only   [ref]group

If the system is not going to be used as a router, then setting certain kernel parameters ensure that the host will not perform routing of network traffic.

contains 2 rules

Disable Kernel Parameter for Sending ICMP Redirects on all IPv4 Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.send_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.send_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.send_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages contain information from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.all.send_redirects%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_all_send_redirects.conf
        overwrite: true

Disable Kernel Parameter for Sending ICMP Redirects on all IPv4 Interfaces by Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.send_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.send_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.send_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages contain information from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.ipv4.conf.default.send_redirects%3D0%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_ipv4_conf_default_send_redirects.conf
        overwrite: true

Uncommon Network Protocols   [ref]group

The system includes support for several network protocols which are not commonly used. Although security vulnerabilities in kernel networking code are not frequently discovered, the consequences can be dramatic. Ensuring uncommon network protocols are disabled reduces the system's risk to attacks targeted at its implementation of those protocols.

Warning:  Although these protocols are not commonly used, avoid disruption in your network environment by ensuring they are not needed prior to disabling them.
contains 5 rules

Disable ATM Support   [ref]rule

The Asynchronous Transfer Mode (ATM) is a protocol operating on network, data link, and physical layers, based on virtual circuits and virtual paths. To configure the system to prevent the atm kernel module from being loaded, add the following line to the file /etc/modprobe.d/atm.conf:

install atm /bin/false

Rationale:

Disabling ATM protects the system against exploitation of any flaws in its implementation.

Severity:  medium

Identifiers:  CCE-82518-2

References:  CCI-000381, AC-18, SRG-OS-000095-GPOS-00049, SRG-OS-000480-GPOS-00227

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20atm%20/bin/false%0Ablacklist%20atm%0A
        mode: 0644
        path: /etc/modprobe.d/atm.conf
        overwrite: true

Disable CAN Support   [ref]rule

The Controller Area Network (CAN) is a serial communications protocol which was initially developed for automotive and is now also used in marine, industrial, and medical applications. To configure the system to prevent the can kernel module from being loaded, add the following line to the file /etc/modprobe.d/can.conf:

install can /bin/false

Rationale:

Disabling CAN protects the system against exploitation of any flaws in its implementation.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20can%20/bin/false%0Ablacklist%20can%0A
        mode: 0644
        path: /etc/modprobe.d/can.conf
        overwrite: true

Disable IEEE 1394 (FireWire) Support   [ref]rule

The IEEE 1394 (FireWire) is a serial bus standard for high-speed real-time communication. To configure the system to prevent the firewire-core kernel module from being loaded, add the following line to the file /etc/modprobe.d/firewire-core.conf:

install firewire-core /bin/false

Rationale:

Disabling FireWire protects the system against exploitation of any flaws in its implementation.

Severity:  low

Identifiers:  CCE-82517-4

References:  CCI-000381, AC-18, SRG-OS-000095-GPOS-00049

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20firewire-core%20/bin/false%0Ablacklist%20firewire-core%0A
        mode: 0644
        path: /etc/modprobe.d/firewire-core.conf
        overwrite: true

Disable SCTP Support   [ref]rule

The Stream Control Transmission Protocol (SCTP) is a transport layer protocol, designed to support the idea of message-oriented communication, with several streams of messages within one connection. To configure the system to prevent the sctp kernel module from being loaded, add the following line to the file /etc/modprobe.d/sctp.conf:

install sctp /bin/false

Rationale:

Disabling SCTP protects the system against exploitation of any flaws in its implementation.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20sctp%20/bin/false%0Ablacklist%20sctp%0A
        mode: 0644
        path: /etc/modprobe.d/sctp.conf
        overwrite: true

Disable TIPC Support   [ref]rule

The Transparent Inter-Process Communication (TIPC) protocol is designed to provide communications between nodes in a cluster. To configure the system to prevent the tipc kernel module from being loaded, add the following line to the file /etc/modprobe.d/tipc.conf:

install tipc /bin/false

Warning:  This configuration baseline was created to deploy the base operating system for general purpose workloads. When the operating system is configured for certain purposes, such as a node in High Performance Computing cluster, it is expected that the tipc kernel module will be loaded.
Rationale:

Disabling TIPC protects the system against exploitation of any flaws in its implementation.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20tipc%20/bin/false%0Ablacklist%20tipc%0A
        mode: 0644
        path: /etc/modprobe.d/tipc.conf
        overwrite: true

Wireless Networking   [ref]group

Wireless networking, such as 802.11 (WiFi) and Bluetooth, can present a security risk to sensitive or classified systems and networks. Wireless networking hardware is much more likely to be included in laptop or portable systems than in desktops or servers.

Removal of hardware provides the greatest assurance that the wireless capability remains disabled. Acquisition policies often include provisions to prevent the purchase of equipment that will be used in sensitive spaces and includes wireless capabilities. If it is impractical to remove the wireless hardware, and policy permits the device to enter sensitive spaces as long as wireless is disabled, efforts should instead focus on disabling wireless capability via software.

contains 8 rules

Disable Wireless Through Software Configuration   [ref]group

If it is impossible to remove the wireless hardware from the device in question, disable as much of it as possible through software. The following methods can disable software support for wireless networking, but note that these methods do not prevent malicious software or careless users from re-activating the devices.

contains 8 rules

Disable Bluetooth Service   [ref]rule

The bluetooth service can be disabled with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-bluetooth-disable
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: bluetooth.service
        enabled: false
        mask: true
      - name: bluetooth.socket
        enabled: false
        mask: true

This will disable the bluetooth service in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

$ sudo service bluetooth stop

Rationale:

Disabling the bluetooth service prevents the system from attempting connections to Bluetooth devices, which entails some security risk. Nevertheless, variation in this risk decision may be expected due to the utility of Bluetooth connectivity and its limited range.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: bluetooth.service
        enabled: false
        mask: true
      - name: bluetooth.socket
        enabled: false
        mask: true
Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: bluetooth.service
        enabled: false
        mask: true
      - name: bluetooth.socket
        enabled: false
        mask: true

Disable Bluetooth Kernel Module   [ref]rule

The kernel's module loading system can be configured to prevent loading of the Bluetooth module. Add the following to the appropriate /etc/modprobe.d configuration file to prevent the loading of the Bluetooth module:

install bluetooth /bin/true

Rationale:

If Bluetooth functionality must be disabled, preventing the kernel from loading the kernel module provides an additional safeguard against its activation.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20bluetooth%20/bin/false%0Ablacklist%20bluetooth%0A
        mode: 0644
        path: /etc/modprobe.d/bluetooth.conf
        overwrite: true

Disable Kernel cfg80211 Module   [ref]rule

To configure the system to prevent the cfg80211 kernel module from being loaded, add the following line to the file /etc/modprobe.d/cfg80211.conf:

install cfg80211 /bin/false

Rationale:

If Wireless functionality must be disabled, preventing the kernel from loading the kernel module provides an additional safeguard against its activation.

Severity:  medium

Identifiers:  CCE-85932-2

References:  AC-18(a), AC-18(3), CM-7(a), CM-7(b), CM-6(a), MP-7, AC-18(4)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20cfg80211%20/bin/false%0Ablacklist%20cfg80211%0A
        mode: 0644
        path: /etc/modprobe.d/cfg80211.conf
        overwrite: true

Disable Kernel iwlmvm Module   [ref]rule

To configure the system to prevent the iwlmvm kernel module from being loaded, add the following line to the file /etc/modprobe.d/iwlmvm.conf:

install iwlmvm /bin/false

Rationale:

If Wireless functionality must be disabled, preventing the kernel from loading the kernel module provides an additional safeguard against its activation.

Severity:  medium

Identifiers:  CCE-85933-0

References:  AC-18(a), AC-18(3), CM-7(a), CM-7(b), CM-6(a), MP-7, AC-18(4)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20iwlmvm%20/bin/false%0Ablacklist%20iwlmvm%0A
        mode: 0644
        path: /etc/modprobe.d/iwlmvm.conf
        overwrite: true

Disable Kernel iwlwifi Module   [ref]rule

To configure the system to prevent the iwlwifi kernel module from being loaded, add the following line to the file /etc/modprobe.d/iwlwifi.conf:

install iwlwifi /bin/false

Rationale:

If Wireless functionality must be disabled, preventing the kernel from loading the kernel module provides an additional safeguard against its activation.

Severity:  medium

Identifiers:  CCE-85934-8

References:  AC-18(a), AC-18(3), CM-7(a), CM-7(b), CM-6(a), MP-7, AC-18(4)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20iwlwifi%20/bin/false%0Ablacklist%20iwlwifi%0A
        mode: 0644
        path: /etc/modprobe.d/iwlwifi.conf
        overwrite: true

Disable Kernel mac80211 Module   [ref]rule

To configure the system to prevent the mac80211 kernel module from being loaded, add the following line to the file /etc/modprobe.d/mac80211.conf:

install mac80211 /bin/false

Rationale:

If Wireless functionality must be disabled, preventing the kernel from loading the kernel module provides an additional safeguard against its activation.

Severity:  medium

Identifiers:  CCE-85935-5

References:  AC-18(a), AC-18(3), CM-7(a), CM-7(b), CM-6(a), MP-7, AC-18(4)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20mac80211%20/bin/false%0Ablacklist%20mac80211%0A
        mode: 0644
        path: /etc/modprobe.d/mac80211.conf
        overwrite: true

Disable WiFi or Bluetooth in BIOS   [ref]rule

Some machines that include built-in wireless support offer the ability to disable the device through the BIOS. This is hardware-specific; consult your hardware manual or explore the BIOS setup during boot.

Rationale:

Disabling wireless support in the BIOS prevents easy activation of the wireless interface, generally requiring administrators to reboot the system first.

Severity:  unknown

Deactivate Wireless Network Interfaces   [ref]rule

Deactivating wireless network interfaces should prevent normal usage of the wireless capability.

Configure the system to disable all wireless network interfaces with the following command:

$ sudo nmcli radio all off

Rationale:

The use of wireless networking can introduce many different attack vectors into the organization's network. Common attack vectors such as malicious association and ad hoc networks will allow an attacker to spoof a wireless access point (AP), allowing validated systems to connect to the malicious AP and enabling the attacker to monitor and record network traffic. These malicious APs can also serve to create a man-in-the-middle attack or be used to create a denial of service to valid network resources.

Severity:  medium

File Permissions and Masks   [ref]group

Traditional Unix security relies heavily on file and directory permissions to prevent unauthorized users from reading or modifying files to which they should not have access.

Several of the commands in this section search filesystems for files or directories with certain characteristics, and are intended to be run on every local partition on a given system. When the variable PART appears in one of the commands below, it means that the command is intended to be run repeatedly, with the name of each local partition substituted for PART in turn.

The following command prints a list of all xfs partitions on the local system, which is the default filesystem for Red Hat Enterprise Linux CoreOS 4 installations:

$ mount -t xfs | awk '{print $3}'
For any systems that use a different local filesystem type, modify this command as appropriate.

contains 26 rules

Verify Permissions on Important Files and Directories   [ref]group

Permissions for many files on a system must be set restrictively to ensure sensitive information is properly protected. This section discusses important permission restrictions which can be verified to ensure that no harmful discrepancies have arisen.

contains 2 rules

Restrict Dynamic Mounting and Unmounting of Filesystems   [ref]group

Linux includes a number of facilities for the automated addition and removal of filesystems on a running system. These facilities may be necessary in many environments, but this capability also carries some risk -- whether direct risk from allowing users to introduce arbitrary filesystems, or risk that software flaws in the automated mount facility itself could allow an attacker to compromise the system.

This command can be used to list the types of filesystems that are available to the currently executing kernel:

$ find /lib/modules/`uname -r`/kernel/fs -type f -name '*.ko'
If these filesystems are not required then they can be explicitly disabled in a configuratio file in /etc/modprobe.d.

contains 11 rules

Disable the Automounter   [ref]rule

The autofs daemon mounts and unmounts filesystems, such as user home directories shared via NFS, on demand. In addition, autofs can be used to handle removable media, and the default configuration provides the cdrom device as /misc/cd. However, this method of providing access to removable media is not common, so autofs can almost always be disabled if NFS is not in use. Even if NFS is required, it may be possible to configure filesystem mounts statically by editing /etc/fstab rather than relying on the automounter.

The autofs service can be disabled with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-autofs-disable
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: autofs.service
        enabled: false
        mask: true
      - name: autofs.socket
        enabled: false
        mask: true

This will disable the autofs service in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

Disabling the automounter permits the administrator to statically control filesystem mounting through /etc/fstab.

Additionally, automatically mounting filesystems permits easy introduction of unknown devices, thereby facilitating malicious activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: autofs.service
        enabled: false
        mask: true
      - name: autofs.socket
        enabled: false
        mask: true
Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: autofs.service
        enabled: false
        mask: true
      - name: autofs.socket
        enabled: false
        mask: true

Disable Booting from USB Devices in Boot Firmware   [ref]rule

Configure the system boot firmware (historically called BIOS on PC systems) to disallow booting from USB drives.

Rationale:

Booting a system from a USB device would allow an attacker to circumvent any security measures provided by the operating system. Attackers could mount partitions and modify the configuration of the OS.

Severity:  unknown

Disable Kernel Support for USB via Bootloader Configuration   [ref]rule

All USB support can be disabled by adding the nousb argument to the kernel's boot loader configuration. To do so, Add the nousb kernel argument via a MachineConfig object.

Warning:  Disabling all kernel support for USB will cause problems for systems with USB-based keyboards, mice, or printers. This configuration is infeasible for systems which require USB devices, which is common.
Rationale:

Disabling the USB subsystem within the Linux kernel at system boot will protect against potentially malicious USB devices, although it is only practical in specialized systems.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - nousb

Disable Mounting of cramfs   [ref]rule

To configure the system to prevent the cramfs kernel module from being loaded, add the following line to the file /etc/modprobe.d/cramfs.conf:

install cramfs /bin/false
This effectively prevents usage of this uncommon filesystem. The cramfs filesystem type is a compressed read-only Linux filesystem embedded in small footprint systems. A cramfs image can be used without having to first decompress the image.

Rationale:

Removing support for unneeded filesystem types reduces the local attack surface of the server.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20cramfs%20/bin/false%0Ablacklist%20cramfs%0A
        mode: 0644
        path: /etc/modprobe.d/cramfs.conf
        overwrite: true

Disable Mounting of freevxfs   [ref]rule

To configure the system to prevent the freevxfs kernel module from being loaded, add the following line to the file /etc/modprobe.d/freevxfs.conf:

install freevxfs /bin/false
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20freevxfs%20/bin/false%0Ablacklist%20freevxfs%0A
        mode: 0644
        path: /etc/modprobe.d/freevxfs.conf
        overwrite: true

Disable Mounting of hfs   [ref]rule

To configure the system to prevent the hfs kernel module from being loaded, add the following line to the file /etc/modprobe.d/hfs.conf:

install hfs /bin/false
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20hfs%20/bin/false%0Ablacklist%20hfs%0A
        mode: 0644
        path: /etc/modprobe.d/hfs.conf
        overwrite: true

Disable Mounting of hfsplus   [ref]rule

To configure the system to prevent the hfsplus kernel module from being loaded, add the following line to the file /etc/modprobe.d/hfsplus.conf:

install hfsplus /bin/false
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20hfsplus%20/bin/false%0Ablacklist%20hfsplus%0A
        mode: 0644
        path: /etc/modprobe.d/hfsplus.conf
        overwrite: true

Disable Mounting of jffs2   [ref]rule

To configure the system to prevent the jffs2 kernel module from being loaded, add the following line to the file /etc/modprobe.d/jffs2.conf:

install jffs2 /bin/false
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20jffs2%20/bin/false%0Ablacklist%20jffs2%0A
        mode: 0644
        path: /etc/modprobe.d/jffs2.conf
        overwrite: true

Disable Mounting of squashfs   [ref]rule

To configure the system to prevent the squashfs kernel module from being loaded, add the following line to the file /etc/modprobe.d/squashfs.conf:

install squashfs /bin/false
This effectively prevents usage of this uncommon filesystem. The squashfs filesystem type is a compressed read-only Linux filesystem embedded in small footprint systems (similar to cramfs). A squashfs image can be used without having to first decompress the image.

Rationale:

Removing support for unneeded filesystem types reduces the local attack surface of the system.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20squashfs%20/bin/false%0Ablacklist%20squashfs%0A
        mode: 0644
        path: /etc/modprobe.d/squashfs.conf
        overwrite: true

Disable Mounting of udf   [ref]rule

To configure the system to prevent the udf kernel module from being loaded, add the following line to the file /etc/modprobe.d/udf.conf:

install udf /bin/false
This effectively prevents usage of this uncommon filesystem. The udf filesystem type is the universal disk format used to implement the ISO/IEC 13346 and ECMA-167 specifications. This is an open vendor filesystem type for data storage on a broad range of media. This filesystem type is neccessary to support writing DVDs and newer optical disc formats.

Rationale:

Removing support for unneeded filesystem types reduces the local attack surface of the system.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20udf%20/bin/false%0Ablacklist%20udf%0A
        mode: 0644
        path: /etc/modprobe.d/udf.conf
        overwrite: true

Disable Modprobe Loading of USB Storage Driver   [ref]rule

To prevent USB storage devices from being used, configure the kernel module loading system to prevent automatic loading of the USB storage driver. To configure the system to prevent the usb-storage kernel module from being loaded, add the following line to the file /etc/modprobe.d/usb-storage.conf:

install usb-storage /bin/false
This will prevent the modprobe program from loading the usb-storage module, but will not prevent an administrator (or another program) from using the insmod program to load the module manually.

Rationale:

USB storage devices such as thumb drives can be used to introduce malicious software.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,install%20usb-storage%20/bin/false%0Ablacklist%20usb-storage%0A
        mode: 0644
        path: /etc/modprobe.d/usb-storage.conf
        overwrite: true

Restrict Programs from Dangerous Execution Patterns   [ref]group

The recommendations in this section are designed to ensure that the system's features to protect against potentially dangerous program execution are activated. These protections are applied at the system initialization or kernel level, and defend against certain types of badly-configured or compromised programs.

contains 13 rules

Disable Core Dumps   [ref]group

A core dump file is the memory image of an executable program when it was terminated by the operating system due to errant behavior. In most cases, only software developers legitimately need to access these files. The core dump files may also contain sensitive information, or unnecessarily occupy large amounts of disk space.

Once a hard limit is set in /etc/security/limits.conf, or to a file within the /etc/security/limits.d/ directory, a user cannot increase that limit within his or her own session. If access to core dumps is required, consider restricting them to only certain users or groups. See the limits.conf man page for more information.

The core dumps of setuid programs are further protected. The sysctl variable fs.suid_dumpable controls whether the kernel allows core dumps from these programs at all. The default value of 0 is recommended.

contains 4 rules

Disable acquiring, saving, and processing core dumps   [ref]rule

The systemd-coredump.socket unit is a socket activation of the systemd-coredump@.service which processes core dumps. By masking the unit, core dump processing is disabled.

Rationale:

A core dump includes a memory image taken at the time the operating system terminates an application. The memory image could contain sensitive data and is generally useful only for developers trying to debug problems.

Severity:  medium

Identifiers:  CCE-82530-7

References:  CCI-000366, SC-7(10), FMT_SMF_EXT.1, SRG-OS-000480-GPOS-00227

Disable core dump backtraces   [ref]rule

The ProcessSizeMax option in [Coredump] section of /etc/systemd/coredump.conf specifies the maximum size in bytes of a core which will be processed. Core dumps exceeding this size may be stored, but the backtrace will not be generated.

Warning:  If the /etc/systemd/coredump.conf file does not already contain the [Coredump] section, the value will not be configured correctly.
Rationale:

A core dump includes a memory image taken at the time the operating system terminates an application. The memory image could contain sensitive data and is generally useful only for developers or system operators trying to debug problems. Enabling core dumps on production systems is not recommended, however there may be overriding operational requirements to enable advanced debuging. Permitting temporary enablement of core dumps during such situations should be reviewed through local needs and policy.

Severity:  medium

Identifiers:  CCE-82529-9

References:  CCI-000366, CM-6, Req-3.2, SRG-OS-000480-GPOS-00227, 3.3.1.1, 3.3.1, 3.3

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,%23%20%20This%20file%20is%20part%20of%20systemd.%0A%23%0A%23%20%20systemd%20is%20free%20software%3B%20you%20can%20redistribute%20it%20and/or%20modify%20it%0A%23%20%20under%20the%20terms%20of%20the%20GNU%20Lesser%20General%20Public%20License%20as%20published%20by%0A%23%20%20the%20Free%20Software%20Foundation%3B%20either%20version%202.1%20of%20the%20License%2C%20or%0A%23%20%20%28at%20your%20option%29%20any%20later%20version.%0A%23%0A%23%20Entries%20in%20this%20file%20show%20the%20compile%20time%20defaults.%0A%23%20You%20can%20change%20settings%20by%20editing%20this%20file.%0A%23%20Defaults%20can%20be%20restored%20by%20simply%20deleting%20this%20file.%0A%23%0A%23%20See%20coredump.conf%285%29%20for%20details.%0A%0A%5BCoredump%5D%0A%23Storage%3Dexternal%0A%23Compress%3Dyes%0A%23ProcessSizeMax%3D2G%0A%23ExternalSizeMax%3D2G%0A%23JournalSizeMax%3D767M%0A%23MaxUse%3D%0A%23KeepFree%3D%0AStorage%3Dnone%0AProcessSizeMax%3D0%0A
        mode: 0644
        path: /etc/systemd/coredump.conf
        overwrite: true

Disable storing core dump   [ref]rule

The Storage option in [Coredump] sectionof /etc/systemd/coredump.conf can be set to none to disable storing core dumps permanently.

Warning:  If the /etc/systemd/coredump.conf file does not already contain the [Coredump] section, the value will not be configured correctly.
Rationale:

A core dump includes a memory image taken at the time the operating system terminates an application. The memory image could contain sensitive data and is generally useful only for developers or system operators trying to debug problems. Enabling core dumps on production systems is not recommended, however there may be overriding operational requirements to enable advanced debuging. Permitting temporary enablement of core dumps during such situations should be reviewed through local needs and policy.

Severity:  medium

Identifiers:  CCE-82528-1

References:  CCI-000366, CM-6, Req-3.2, SRG-OS-000480-GPOS-00227, 3.3.1.1, 3.3.1, 3.3

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,%23%20%20This%20file%20is%20part%20of%20systemd.%0A%23%0A%23%20%20systemd%20is%20free%20software%3B%20you%20can%20redistribute%20it%20and/or%20modify%20it%0A%23%20%20under%20the%20terms%20of%20the%20GNU%20Lesser%20General%20Public%20License%20as%20published%20by%0A%23%20%20the%20Free%20Software%20Foundation%3B%20either%20version%202.1%20of%20the%20License%2C%20or%0A%23%20%20%28at%20your%20option%29%20any%20later%20version.%0A%23%0A%23%20Entries%20in%20this%20file%20show%20the%20compile%20time%20defaults.%0A%23%20You%20can%20change%20settings%20by%20editing%20this%20file.%0A%23%20Defaults%20can%20be%20restored%20by%20simply%20deleting%20this%20file.%0A%23%0A%23%20See%20coredump.conf%285%29%20for%20details.%0A%0A%5BCoredump%5D%0A%23Storage%3Dexternal%0A%23Compress%3Dyes%0A%23ProcessSizeMax%3D2G%0A%23ExternalSizeMax%3D2G%0A%23JournalSizeMax%3D767M%0A%23MaxUse%3D%0A%23KeepFree%3D%0AStorage%3Dnone%0AProcessSizeMax%3D0%0A
        mode: 0644
        path: /etc/systemd/coredump.conf
        overwrite: true

Disable Core Dumps for All Users   [ref]rule

To disable core dumps for all users, add the following line to /etc/security/limits.conf, or to a file within the /etc/security/limits.d/ directory:

*     hard   core    0

Rationale:

A core dump includes a memory image taken at the time the operating system terminates an application. The memory image could contain sensitive data and is generally useful only for developers trying to debug problems.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,%2A%20%20%20%20%20hard%20%20%20core%20%20%20%200
        mode: 0644
        path: /etc/security/limits.d/75-disable_users_coredumps.conf
        overwrite: true

Enable ExecShield   [ref]group

ExecShield describes kernel features that provide protection against exploitation of memory corruption errors such as buffer overflows. These features include random placement of the stack and other memory regions, prevention of execution in memory that should only hold data, and special handling of text buffers. These protections are enabled by default on 32-bit systems and controlled through sysctl variables kernel.exec-shield and kernel.randomize_va_space. On the latest 64-bit systems, kernel.exec-shield cannot be enabled or disabled with sysctl.

contains 1 rule

Restrict Exposed Kernel Pointer Addresses Access   [ref]rule

To set the runtime status of the kernel.kptr_restrict kernel parameter, run the following command:

$ sudo sysctl -w kernel.kptr_restrict=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.kptr_restrict = 1

Rationale:

Exposing kernel pointers (through procfs or seq_printf()) exposes kernel writeable structures which may contain functions pointers. If a write vulnerability occurs in the kernel, allowing write access to any of this structure, the kernel can be compromised. This option disallow any program without the CAP_SYSLOG capability to get the addresses of kernel pointers by replacing them with 0.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.kptr_restrict%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_kptr_restrict.conf
        overwrite: true

Memory Poisoning   [ref]group

Memory Poisoning consists of writing a special value to uninitialized or freed memory. Poisoning can be used as a mechanism to prevent leak of information and detection of corrupted memory.

contains 1 rule

Enable page allocator poisoning   [ref]rule

To enable poisoning of free pages, add the argument page_poison=1 to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

Poisoning writes an arbitrary value to freed pages, so any modification or reference to that page after being freed or before being initialized will be detected and prevented. This prevents many types of use-after-free vulnerabilities at little performance cost. Also prevents leak of data and detection of corrupted memory.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - page_poison=1

Disable storing core dumps   [ref]rule

To set the runtime status of the kernel.core_pattern kernel parameter, run the following command:

$ sudo sysctl -w kernel.core_pattern=|/bin/false
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.core_pattern = |/bin/false

Rationale:

A core dump includes a memory image taken at the time the operating system terminates an application. The memory image could contain sensitive data and is generally useful only for developers trying to debug problems.

Severity:  medium

Identifiers:  CCE-82527-3

References:  CCI-000366, SC-7(10), SRG-OS-000480-GPOS-00227, 3.3.1.1, 3.3.1, 3.3

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.core_pattern%20%3D%20%7C/bin/false%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_core_pattern.conf
        overwrite: true

Restrict Access to Kernel Message Buffer   [ref]rule

To set the runtime status of the kernel.dmesg_restrict kernel parameter, run the following command:

$ sudo sysctl -w kernel.dmesg_restrict=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.dmesg_restrict = 1

Rationale:

Unprivileged access to the kernel syslog can expose sensitive kernel address information.

Severity:  low

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.dmesg_restrict%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_dmesg_restrict.conf
        overwrite: true

Disable Kernel Image Loading   [ref]rule

To set the runtime status of the kernel.kexec_load_disabled kernel parameter, run the following command:

$ sudo sysctl -w kernel.kexec_load_disabled=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.kexec_load_disabled = 1

Rationale:

Disabling kexec_load allows greater control of the kernel memory. It makes it impossible to load another kernel image after it has been disabled.

Severity:  medium

Identifiers:  CCE-82500-0

References:  CCI-003992, CCI-000366, CM-6, SRG-OS-000480-GPOS-00227, SRG-OS-000366-GPOS-00153

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.kexec_load_disabled%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_kexec_load_disabled.conf
        overwrite: true

Disallow kernel profiling by unprivileged users   [ref]rule

To set the runtime status of the kernel.perf_event_paranoid kernel parameter, run the following command:

$ sudo sysctl -w kernel.perf_event_paranoid=2
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.perf_event_paranoid = 2

Rationale:

Kernel profiling can reveal sensitive information about kernel behaviour.

Severity:  low

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.perf_event_paranoid%3D2%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_perf_event_paranoid.conf
        overwrite: true

Disable Access to Network bpf() Syscall From Unprivileged Processes   [ref]rule

To set the runtime status of the kernel.unprivileged_bpf_disabled kernel parameter, run the following command:

$ sudo sysctl -w kernel.unprivileged_bpf_disabled=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.unprivileged_bpf_disabled = 1

Rationale:

Loading and accessing the packet filters programs and maps using the bpf() syscall has the potential of revealing sensitive information about the kernel state.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.unprivileged_bpf_disabled%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_unprivileged_bpf_disabled.conf
        overwrite: true

Restrict usage of ptrace to descendant processes   [ref]rule

To set the runtime status of the kernel.yama.ptrace_scope kernel parameter, run the following command:

$ sudo sysctl -w kernel.yama.ptrace_scope=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
kernel.yama.ptrace_scope = 1

Rationale:

Unrestricted usage of ptrace allows compromised binaries to run ptrace on another processes of the user. Like this, the attacker can steal sensitive information from the target processes (e.g. SSH sessions, web browser, ...) without any additional assistance from the user (i.e. without resorting to phishing).

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,kernel.yama.ptrace_scope%3D1%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_kernel_yama_ptrace_scope.conf
        overwrite: true

Harden the operation of the BPF just-in-time compiler   [ref]rule

To set the runtime status of the net.core.bpf_jit_harden kernel parameter, run the following command:

$ sudo sysctl -w net.core.bpf_jit_harden=2
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d:
net.core.bpf_jit_harden = 2

Rationale:

When hardened, the extended Berkeley Packet Filter just-in-time compiler will randomize any kernel addresses in the BPF programs and maps, and will not expose the JIT addresses in /proc/kallsyms.

Severity:  medium

Identifiers:  CCE-82505-9

References:  CCI-000366, CM-6, SC-7(10), SRG-OS-000480-GPOS-00227, R12

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,net.core.bpf_jit_harden%3D2%0A
        mode: 0644
        path: /etc/sysctl.d/75-sysctl_net_core_bpf_jit_harden.conf
        overwrite: true

SELinux   [ref]group

SELinux is a feature of the Linux kernel which can be used to guard against misconfigured or compromised programs. SELinux enforces the idea that programs should be limited in what files they can access and what actions they can take.

The default SELinux policy, as configured on Red Hat Enterprise Linux CoreOS 4, has been sufficiently developed and debugged that it should be usable on almost any system with minimal configuration and a small amount of system administrator training. This policy prevents system services - including most of the common network-visible services such as mail servers, FTP servers, and DNS servers - from accessing files which those services have no valid reason to access. This action alone prevents a huge amount of possible damage from network attacks against services, from trojaned software, and so forth.

This guide recommends that SELinux be enabled using the default (targeted) policy on every Red Hat Enterprise Linux CoreOS 4 system, unless that system has unusual requirements which make a stronger policy appropriate.

contains 3 rules

Ensure SELinux Not Disabled in the kernel arguments   [ref]rule

SELinux can be disabled at boot time by disabling it via a kernel argument. Remove any instances of selinux=0 from the kernel arguments in that file to prevent SELinux from being disabled at boot.

Rationale:

Disabling a major host protection feature, such as SELinux, at boot time prevents it from confining system services at boot time. Further, it increases the chances that it will remain off during system operation.

Severity:  medium

Identifiers:  CCE-83899-5

References:  1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9, APO01.06, APO11.04, APO13.01, BAI03.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06, MEA02.01, 3.1.2, 3.7.2, CCI-000022, CCI-000032, 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e), 4.2.3.4, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, AC-3, AC-3(3)(a), DE.AE-1, ID.AM-3, PR.AC-4, PR.AC-5, PR.AC-6, PR.DS-5, PR.PT-1, PR.PT-3, PR.PT-4, SRG-APP-000233-CTR-000585, APP.4.4.A4, SYS.1.6.A3, SYS.1.6.A18, SYS.1.6.A21, CNTR-OS-000540

Configure SELinux Policy   [ref]rule

The SELinux targeted policy is appropriate for general-purpose desktops and servers, as well as systems in many other roles. To configure the system to use this policy, add or correct the following line in /etc/selinux/config:

SELINUXTYPE=targeted
Other policies, such as mls, provide additional security labeling and greater confinement but are not compatible with many general-purpose use cases.

Rationale:

Setting the SELinux policy to targeted or a more specialized policy ensures the system will confine processes that are likely to be targeted for exploitation, such as network or system services.

Note: During the development or debugging of SELinux modules, it is common to temporarily place non-production systems in permissive mode. In such temporary cases, SELinux policies should be developed, and once work is completed, the system should be reconfigured to targeted.

Severity:  medium

Identifiers:  CCE-82532-3

References:  1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9, APO01.06, APO11.04, APO13.01, BAI03.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06, MEA02.01, 3.1.2, 3.7.2, CCI-002696, 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e), 4.2.3.4, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-003-8 R5.1.1, CIP-003-8 R5.2, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-004-6 R3.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, CIP-007-3 R6.5, AC-3, AC-3(3)(a), AU-9, SC-7(21), DE.AE-1, ID.AM-3, PR.AC-4, PR.AC-5, PR.AC-6, PR.DS-5, PR.PT-1, PR.PT-3, PR.PT-4, SRG-OS-000445-GPOS-00199, SRG-APP-000233-CTR-000585, R46, R64, APP.4.4.A4, SYS.1.6.A3, SYS.1.6.A18, SYS.1.6.A21, 1.2.6, 1.2, CNTR-OS-000540

Ensure SELinux State is Enforcing   [ref]rule

The SELinux state should be set to enforcing at system boot time. In the file /etc/selinux/config, add or correct the following line to configure the system to boot into enforcing mode:

SELINUX=enforcing

Rationale:

Setting the SELinux state to enforcing ensures SELinux is able to confine potentially compromised processes to the security policy, which is designed to prevent them from causing damage to the system or further elevating their privileges.

Severity:  high

Identifiers:  CCE-82531-5

References:  1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 5, 6, 8, 9, APO01.06, APO11.04, APO13.01, BAI03.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.03, DSS06.06, MEA02.01, 3.1.2, 3.7.2, CCI-002696, CCI-001084, 164.308(a)(1)(ii)(D), 164.308(a)(3), 164.308(a)(4), 164.310(b), 164.310(c), 164.312(a), 164.312(e), 4.2.3.4, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-003-8 R5.1.1, CIP-003-8 R5.2, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-004-6 R3.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, CIP-007-3 R6.5, AC-3, AC-3(3)(a), AU-9, SC-7(21), DE.AE-1, ID.AM-3, PR.AC-4, PR.AC-5, PR.AC-6, PR.DS-5, PR.PT-1, PR.PT-3, PR.PT-4, SRG-OS-000445-GPOS-00199, SRG-OS-000134-GPOS-00068, R37, R79, APP.4.4.A4, SYS.1.6.A3, SYS.1.6.A18, SYS.1.6.A21, 1.2.6, 1.2, CNTR-OS-000540

Services   [ref]group

The best protection against vulnerable software is running less software. This section describes how to review the software which Red Hat Enterprise Linux CoreOS 4 installs on a system and disable software which is not needed. It then enumerates the software packages installed on a default Red Hat Enterprise Linux CoreOS 4 system and provides guidance about which ones can be safely disabled.

Red Hat Enterprise Linux CoreOS 4 provides a convenient minimal install option that essentially installs the bare necessities for a functional system. When building Red Hat Enterprise Linux CoreOS 4 systems, it is highly recommended to select the minimal packages and then build up the system from there.

contains 19 rules

Network Time Protocol   [ref]group

The Network Time Protocol is used to manage the system clock over a network. Computer clocks are not very accurate, so time will drift unpredictably on unmanaged systems. Central time protocols can be used both to ensure that time is consistent among a network of systems, and that their time is consistent with the outside world.

If every system on a network reliably reports the same time, then it is much easier to correlate log messages in case of an attack. In addition, a number of cryptographic protocols (such as Kerberos) use timestamps to prevent certain types of attacks. If your network does not have synchronized time, these protocols may be unreliable or even unusable.

Depending on the specifics of the network, global time accuracy may be just as important as local synchronization, or not very important at all. If your network is connected to the Internet, using a public timeserver (or one provided by your enterprise) provides globally accurate timestamps which may be essential in investigating or responding to an attack which originated outside of your network.

A typical network setup involves a small number of internal systems operating as NTP servers, and the remainder obtaining time information from those internal servers.

There is a choice between the daemons ntpd and chronyd, which are available from the repositories in the ntp and chrony packages respectively.

The default chronyd daemon can work well when external time references are only intermittently accesible, can perform well even when the network is congested for longer periods of time, can usually synchronize the clock faster and with better time accuracy, and quickly adapts to sudden changes in the rate of the clock, for example, due to changes in the temperature of the crystal oscillator. Chronyd should be considered for all systems which are frequently suspended or otherwise intermittently disconnected and reconnected to a network. Mobile and virtual systems for example.

The ntpd NTP daemon fully supports NTP protocol version 4 (RFC 5905), including broadcast, multicast, manycast clients and servers, and the orphan mode. It also supports extra authentication schemes based on public-key cryptography (RFC 5906). The NTP daemon (ntpd) should be considered for systems which are normally kept permanently on. Systems which are required to use broadcast or multicast IP, or to perform authentication of packets with the Autokey protocol, should consider using ntpd.

Refer to https://docs.fedoraproject.org/en-US/fedora/latest/system-administrators-guide/servers/Configuring_NTP_Using_the_chrony_Suite/ for more detailed comparison of features of chronyd and ntpd daemon features respectively, and for further guidance how to choose between the two NTP daemons.

The upstream manual pages at https://chrony-project.org/documentation.html for chronyd and http://www.ntp.org for ntpd provide additional information on the capabilities and configuration of each of the NTP daemons.

contains 6 rules

Enable the NTP Daemon   [ref]rule

As a user with administrator privileges, log into a node in the relevant pool:

$ oc debug node/$NODE_NAME
At the
sh-4.4#
prompt, run:
# chroot /host
Run the following command to determine the current status of the chronyd service:
$ sudo systemctl is-active chronyd
If the service is running, it should return the following:
active
Note: The chronyd daemon is enabled by default.

As a user with administrator privileges, log into a node in the relevant pool:
$ oc debug node/$NODE_NAME
At the
sh-4.4#
prompt, run:
# chroot /host
Run the following command to determine the current status of the ntpd service:
$ sudo systemctl is-active ntpd
If the service is running, it should return the following:
active
Note: The ntpd daemon is not enabled by default. Though as mentioned in the previous sections in certain environments the ntpd daemon might be preferred to be used rather than the chronyd one. Refer to: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-configuring_ntp_using_the_chrony_suite for guidance which NTP daemon to choose depending on the environment used.

Rationale:

Enabling some of chronyd or ntpd services ensures that the NTP daemon will be running and that the system will synchronize its time to any servers specified. This is important whether the system is configured to be a client (and synchronize only its own clock) or it is also acting as an NTP server to other systems. Synchronizing time is essential for authentication services such as Kerberos, but it is also important for maintaining accurate logs and auditing possible security breaches.

The chronyd and ntpd NTP daemons offer all of the functionality of ntpdate, which is now deprecated.

Severity:  medium

Disable chrony daemon from acting as server   [ref]rule

The port option in /etc/chrony.conf can be set to 0 to make chrony daemon to never open any listening port for server operation and to operate strictly in a client-only mode.

Rationale:

In order to prevent unauthorized connection of devices, unauthorized transfer of information, or unauthorized tunneling (i.e., embedding of data types within data types), organizations must disable or restrict unused or unnecessary physical and logical ports/protocols on information systems. Operating systems are capable of providing a wide variety of functions and services. Some of the functions and services provided by default may not be necessary to support essential organizational operations. Additionally, it is sometimes convenient to provide multiple services from a single component (e.g., VPN and IPS); however, doing so increases risk over limiting the services provided by any one component. To support the requirements and principles of least functionality, the operating system must support the organizational requirements, providing only essential capabilities and limiting the use of ports, protocols, and/or services to only those required, authorized, and approved to conduct official business or to address authorized quality of life issues.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%20Allow%20for%20extra%20configuration%20files.%20This%20is%20useful%0A%23%20for%20admins%20specifying%20their%20own%20NTP%20servers%0Ainclude%20/etc/chrony.d/%2A.conf%0A%0A%23%20Set%20chronyd%20as%20client-only.%0Aport%200%0A%0A%23%20Disable%20chronyc%20from%20the%20network%0Acmdport%200%0A%0A%23%20Record%20the%20rate%20at%20which%20the%20system%20clock%20gains/losses%20time.%0Adriftfile%20/var/lib/chrony/drift%0A%0A%23%20Allow%20the%20system%20clock%20to%20be%20stepped%20in%20the%20first%20three%20updates%0A%23%20if%20its%20offset%20is%20larger%20than%201%20second.%0Amakestep%201.0%203%0A%0A%23%20Enable%20kernel%20synchronization%20of%20the%20real-time%20clock%20%28RTC%29.%0Artcsync%0A%0A%23%20Enable%20hardware%20timestamping%20on%20all%20interfaces%20that%20support%20it.%0A%23hwtimestamp%20%2A%0A%0A%23%20Increase%20the%20minimum%20number%20of%20selectable%20sources%20required%20to%20adjust%0A%23%20the%20system%20clock.%0A%23minsources%202%0A%0A%23%20Allow%20NTP%20client%20access%20from%20local%20network.%0A%23allow%20192.168.0.0/16%0A%0A%23%20Serve%20time%20even%20if%20not%20synchronized%20to%20a%20time%20source.%0A%23local%20stratum%2010%0A%0A%23%20Require%20authentication%20%28nts%20or%20key%20option%29%20for%20all%20NTP%20sources.%0A%23authselectmode%20require%0A%0A%23%20Specify%20file%20containing%20keys%20for%20NTP%20authentication.%0Akeyfile%20/etc/chrony.keys%0A%0A%23%20Insert/delete%20leap%20seconds%20by%20slewing%20instead%20of%20stepping.%0A%23leapsecmode%20slew%0A%0A%23%20Get%20TAI-UTC%20offset%20and%20leap%20seconds%20from%20the%20system%20tz%20database.%0Aleapsectz%20right/UTC%0A%0A%23%20Specify%20directory%20for%20log%20files.%0Alogdir%20/var/log/chrony%0A%0A%23%20Select%20which%20information%20is%20logged.%0A%23log%20measurements%20statistics%20tracking }}
        mode: 420
        overwrite: true
        path: /etc/chrony.conf
      - contents:
          source: data:,
        mode: 420
        overwrite: true
        path: /etc/chrony.d/.mco-keep
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20ntp%20server%0A%23%20%7B%7B.var_multiple_time_servers%7D%7D%20we%20have%20to%20put%20variable%20array%20name%20here%20for%20mutilines%20remediation%0A%7B%7B%24var_time_service_set_maxpoll%3A%3D.var_time_service_set_maxpoll%7D%7D%0A%7B%7Brange%20%24element%3A%3D.var_multiple_time_servers%7CtoArrayByComma%7D%7Dserver%20%7B%7B%24element%7D%7D%20minpoll%204%20maxpoll%20%7B%7B%24var_time_service_set_maxpoll%7D%7D%0A%7B%7Bend%7D%7D }}
        mode: 420
        overwrite: true
        path: /etc/chrony.d/ntp-server.conf

Disable network management of chrony daemon   [ref]rule

The cmdport option in /etc/chrony.conf can be set to 0 to stop chrony daemon from listening on the UDP port 323 for management connections made by chronyc.

Rationale:

Minimizing the exposure of the server functionality of the chrony daemon diminishes the attack surface.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%20Allow%20for%20extra%20configuration%20files.%20This%20is%20useful%0A%23%20for%20admins%20specifying%20their%20own%20NTP%20servers%0Ainclude%20/etc/chrony.d/%2A.conf%0A%0A%23%20Set%20chronyd%20as%20client-only.%0Aport%200%0A%0A%23%20Disable%20chronyc%20from%20the%20network%0Acmdport%200%0A%0A%23%20Record%20the%20rate%20at%20which%20the%20system%20clock%20gains/losses%20time.%0Adriftfile%20/var/lib/chrony/drift%0A%0A%23%20Allow%20the%20system%20clock%20to%20be%20stepped%20in%20the%20first%20three%20updates%0A%23%20if%20its%20offset%20is%20larger%20than%201%20second.%0Amakestep%201.0%203%0A%0A%23%20Enable%20kernel%20synchronization%20of%20the%20real-time%20clock%20%28RTC%29.%0Artcsync%0A%0A%23%20Enable%20hardware%20timestamping%20on%20all%20interfaces%20that%20support%20it.%0A%23hwtimestamp%20%2A%0A%0A%23%20Increase%20the%20minimum%20number%20of%20selectable%20sources%20required%20to%20adjust%0A%23%20the%20system%20clock.%0A%23minsources%202%0A%0A%23%20Allow%20NTP%20client%20access%20from%20local%20network.%0A%23allow%20192.168.0.0/16%0A%0A%23%20Serve%20time%20even%20if%20not%20synchronized%20to%20a%20time%20source.%0A%23local%20stratum%2010%0A%0A%23%20Require%20authentication%20%28nts%20or%20key%20option%29%20for%20all%20NTP%20sources.%0A%23authselectmode%20require%0A%0A%23%20Specify%20file%20containing%20keys%20for%20NTP%20authentication.%0Akeyfile%20/etc/chrony.keys%0A%0A%23%20Insert/delete%20leap%20seconds%20by%20slewing%20instead%20of%20stepping.%0A%23leapsecmode%20slew%0A%0A%23%20Get%20TAI-UTC%20offset%20and%20leap%20seconds%20from%20the%20system%20tz%20database.%0Aleapsectz%20right/UTC%0A%0A%23%20Specify%20directory%20for%20log%20files.%0Alogdir%20/var/log/chrony%0A%0A%23%20Select%20which%20information%20is%20logged.%0A%23log%20measurements%20statistics%20tracking }}
        mode: 420
        overwrite: true
        path: /etc/chrony.conf
      - contents:
          source: data:,
        mode: 420
        overwrite: true
        path: /etc/chrony.d/.mco-keep
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20ntp%20server%0A%23%20%7B%7B.var_multiple_time_servers%7D%7D%20we%20have%20to%20put%20variable%20array%20name%20here%20for%20mutilines%20remediation%0A%7B%7B%24var_time_service_set_maxpoll%3A%3D.var_time_service_set_maxpoll%7D%7D%0A%7B%7Brange%20%24element%3A%3D.var_multiple_time_servers%7CtoArrayByComma%7D%7Dserver%20%7B%7B%24element%7D%7D%20minpoll%204%20maxpoll%20%7B%7B%24var_time_service_set_maxpoll%7D%7D%0A%7B%7Bend%7D%7D }}
        mode: 420
        overwrite: true
        path: /etc/chrony.d/ntp-server.conf

Configure Time Service Maxpoll Interval   [ref]rule

The maxpoll should be configured to 10 in /etc/ntp.conf or /etc/chrony.conf (or /etc/chrony.d/) to continuously poll time servers. To configure maxpoll in /etc/ntp.conf or /etc/chrony.conf (or /etc/chrony.d/) add the following after each server, pool or peer entry:

maxpoll 10
to server directives. If using chrony, any pool directives should be configured too.

Note that if the remediation shipping with this content is being used, the MachineConfig shipped does not include reference NTP servers to point to. It is up to the admin to set these which will vary depending on the cluster's requirements.

The aforementioned remediation does include the directory /etc/chrony.d which would allow the creation of configuration files to set these servers.

If we'd like to set a configuration like the following:
pool 2.rhel.pool.ntp.org iburst

server 0.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 1.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 2.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 3.rhel.pool.ntp.org minpoll 4 maxpoll 10
This could be done with to the following manifest:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-chrony-servers
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,pool%202.rhel.pool.ntp.org%20iburst%0A%0Aserver%200.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%201.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%202.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%203.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010
        mode: 0600
        path: /etc/chrony.d/10-rhel-pool-and-servers.conf
        overwrite: true
Note that this needs to be done for each
MachineConfigPool

Rationale:

Inaccurate time stamps make it more difficult to correlate events and can lead to an inaccurate analysis. Determining the correct time a particular event occurred on a system is critical when conducting forensic analysis and investigating system events. Sources outside the configured acceptable allowance (drift) may be inaccurate. Synchronizing internal information system clocks provides uniformity of time stamps for information systems with multiple system clocks and systems connected over a network. Organizations should consider endpoints that may not have regular access to the authoritative time server (e.g., mobile, teleworking, and tactical endpoints).

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%20Allow%20for%20extra%20configuration%20files.%20This%20is%20useful%0A%23%20for%20admins%20specifying%20their%20own%20NTP%20servers%0Ainclude%20/etc/chrony.d/%2A.conf%0A%0A%23%20Set%20chronyd%20as%20client-only.%0Aport%200%0A%0A%23%20Disable%20chronyc%20from%20the%20network%0Acmdport%200%0A%0A%23%20Record%20the%20rate%20at%20which%20the%20system%20clock%20gains/losses%20time.%0Adriftfile%20/var/lib/chrony/drift%0A%0A%23%20Allow%20the%20system%20clock%20to%20be%20stepped%20in%20the%20first%20three%20updates%0A%23%20if%20its%20offset%20is%20larger%20than%201%20second.%0Amakestep%201.0%203%0A%0A%23%20Enable%20kernel%20synchronization%20of%20the%20real-time%20clock%20%28RTC%29.%0Artcsync%0A%0A%23%20Enable%20hardware%20timestamping%20on%20all%20interfaces%20that%20support%20it.%0A%23hwtimestamp%20%2A%0A%0A%23%20Increase%20the%20minimum%20number%20of%20selectable%20sources%20required%20to%20adjust%0A%23%20the%20system%20clock.%0A%23minsources%202%0A%0A%23%20Allow%20NTP%20client%20access%20from%20local%20network.%0A%23allow%20192.168.0.0/16%0A%0A%23%20Serve%20time%20even%20if%20not%20synchronized%20to%20a%20time%20source.%0A%23local%20stratum%2010%0A%0A%23%20Require%20authentication%20%28nts%20or%20key%20option%29%20for%20all%20NTP%20sources.%0A%23authselectmode%20require%0A%0A%23%20Specify%20file%20containing%20keys%20for%20NTP%20authentication.%0Akeyfile%20/etc/chrony.keys%0A%0A%23%20Insert/delete%20leap%20seconds%20by%20slewing%20instead%20of%20stepping.%0A%23leapsecmode%20slew%0A%0A%23%20Get%20TAI-UTC%20offset%20and%20leap%20seconds%20from%20the%20system%20tz%20database.%0Aleapsectz%20right/UTC%0A%0A%23%20Specify%20directory%20for%20log%20files.%0Alogdir%20/var/log/chrony%0A%0A%23%20Select%20which%20information%20is%20logged.%0A%23log%20measurements%20statistics%20tracking }}
        mode: 420
        overwrite: true
        path: /etc/chrony.conf
      - contents:
          source: data:,
        mode: 420
        overwrite: true
        path: /etc/chrony.d/.mco-keep
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20ntp%20server%0A%23%20%7B%7B.var_multiple_time_servers%7D%7D%20we%20have%20to%20put%20variable%20array%20name%20here%20for%20mutilines%20remediation%0A%7B%7B%24var_time_service_set_maxpoll%3A%3D.var_time_service_set_maxpoll%7D%7D%0A%7B%7Brange%20%24element%3A%3D.var_multiple_time_servers%7CtoArrayByComma%7D%7Dserver%20%7B%7B%24element%7D%7D%20minpoll%204%20maxpoll%20%7B%7B%24var_time_service_set_maxpoll%7D%7D%0A%7B%7Bend%7D%7D }}
        mode: 420
        overwrite: true
        path: /etc/chrony.d/ntp-server.conf

Specify Additional Remote NTP Servers   [ref]rule

Depending on specific functional requirements of a concrete production environment, the Red Hat Enterprise Linux CoreOS 4 system can be configured to utilize the services of the chronyd NTP daemon (the default), or services of the ntpd NTP daemon. Refer to https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-configuring_ntp_using_the_chrony_suite for more detailed comparison of the features of both of the choices, and for further guidance how to choose between the two NTP daemons.
Additional NTP servers can be specified for time synchronization. To do so, perform the following:

  • if the system is configured to use the chronyd as the NTP daemon (the default), edit the file /etc/chrony.conf as follows,
  • if the system is configured to use the ntpd as the NTP daemon, edit the file /etc/ntp.conf as documented below.
Add additional lines of the following form, substituting the IP address or hostname of a remote NTP server for ntpserver:
server ntpserver

Note that if the remediation shipping with this content is being used, the MachineConfig shipped does not include reference NTP servers to point to. It is up to the admin to set these which will vary depending on the cluster's requirements.

The aforementioned remediation does include the directory /etc/chrony.d which would allow the creation of configuration files to set these servers.

If we'd like to set a configuration like the following:
pool 2.rhel.pool.ntp.org iburst

server 0.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 1.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 2.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 3.rhel.pool.ntp.org minpoll 4 maxpoll 10
This could be done with to the following manifest:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-chrony-servers
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,pool%202.rhel.pool.ntp.org%20iburst%0A%0Aserver%200.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%201.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%202.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%203.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010
        mode: 0600
        path: /etc/chrony.d/10-rhel-pool-and-servers.conf
        overwrite: true
Note that this needs to be done for each
MachineConfigPool

Rationale:

Specifying additional NTP servers increases the availability of accurate time data, in the event that one of the specified servers becomes unavailable. This is typical for a system acting as an NTP server for other systems.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%20Allow%20for%20extra%20configuration%20files.%20This%20is%20useful%0A%23%20for%20admins%20specifying%20their%20own%20NTP%20servers%0Ainclude%20/etc/chrony.d/%2A.conf%0A%0A%23%20Set%20chronyd%20as%20client-only.%0Aport%200%0A%0A%23%20Disable%20chronyc%20from%20the%20network%0Acmdport%200%0A%0A%23%20Record%20the%20rate%20at%20which%20the%20system%20clock%20gains/losses%20time.%0Adriftfile%20/var/lib/chrony/drift%0A%0A%23%20Allow%20the%20system%20clock%20to%20be%20stepped%20in%20the%20first%20three%20updates%0A%23%20if%20its%20offset%20is%20larger%20than%201%20second.%0Amakestep%201.0%203%0A%0A%23%20Enable%20kernel%20synchronization%20of%20the%20real-time%20clock%20%28RTC%29.%0Artcsync%0A%0A%23%20Enable%20hardware%20timestamping%20on%20all%20interfaces%20that%20support%20it.%0A%23hwtimestamp%20%2A%0A%0A%23%20Increase%20the%20minimum%20number%20of%20selectable%20sources%20required%20to%20adjust%0A%23%20the%20system%20clock.%0A%23minsources%202%0A%0A%23%20Allow%20NTP%20client%20access%20from%20local%20network.%0A%23allow%20192.168.0.0/16%0A%0A%23%20Serve%20time%20even%20if%20not%20synchronized%20to%20a%20time%20source.%0A%23local%20stratum%2010%0A%0A%23%20Require%20authentication%20%28nts%20or%20key%20option%29%20for%20all%20NTP%20sources.%0A%23authselectmode%20require%0A%0A%23%20Specify%20file%20containing%20keys%20for%20NTP%20authentication.%0Akeyfile%20/etc/chrony.keys%0A%0A%23%20Insert/delete%20leap%20seconds%20by%20slewing%20instead%20of%20stepping.%0A%23leapsecmode%20slew%0A%0A%23%20Get%20TAI-UTC%20offset%20and%20leap%20seconds%20from%20the%20system%20tz%20database.%0Aleapsectz%20right/UTC%0A%0A%23%20Specify%20directory%20for%20log%20files.%0Alogdir%20/var/log/chrony%0A%0A%23%20Select%20which%20information%20is%20logged.%0A%23log%20measurements%20statistics%20tracking }}
        mode: 420
        overwrite: true
        path: /etc/chrony.conf
      - contents:
          source: data:,
        mode: 420
        overwrite: true
        path: /etc/chrony.d/.mco-keep
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20ntp%20server%0A%23%20%7B%7B.var_multiple_time_servers%7D%7D%20we%20have%20to%20put%20variable%20array%20name%20here%20for%20mutilines%20remediation%0A%7B%7B%24var_time_service_set_maxpoll%3A%3D.var_time_service_set_maxpoll%7D%7D%0A%7B%7Brange%20%24element%3A%3D.var_multiple_time_servers%7CtoArrayByComma%7D%7Dserver%20%7B%7B%24element%7D%7D%20minpoll%204%20maxpoll%20%7B%7B%24var_time_service_set_maxpoll%7D%7D%0A%7B%7Bend%7D%7D }}
        mode: 420
        overwrite: true
        path: /etc/chrony.d/ntp-server.conf

Specify a Remote NTP Server   [ref]rule

Depending on specific functional requirements of a concrete production environment, the Red Hat Enterprise Linux CoreOS 4 system can be configured to utilize the services of the chronyd NTP daemon (the default), or services of the ntpd NTP daemon. Refer to https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-configuring_ntp_using_the_chrony_suite for more detailed comparison of the features of both of the choices, and for further guidance how to choose between the two NTP daemons.
To specify a remote NTP server for time synchronization, perform the following:

  • if the system is configured to use the chronyd as the NTP daemon (the default), edit the file /etc/chrony.conf as follows,
  • if the system is configured to use the ntpd as the NTP daemon, edit the file /etc/ntp.conf as documented below.
Add or correct the following lines, substituting the IP or hostname of a remote NTP server for ntpserver:
server ntpserver
This instructs the NTP software to contact that remote server to obtain time data.

Note that if the remediation shipping with this content is being used, the MachineConfig shipped does not include reference NTP servers to point to. It is up to the admin to set these which will vary depending on the cluster's requirements.

The aforementioned remediation does include the directory /etc/chrony.d which would allow the creation of configuration files to set these servers.

If we'd like to set a configuration like the following:
pool 2.rhel.pool.ntp.org iburst

server 0.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 1.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 2.rhel.pool.ntp.org minpoll 4 maxpoll 10
server 3.rhel.pool.ntp.org minpoll 4 maxpoll 10
This could be done with to the following manifest:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-chrony-servers
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,pool%202.rhel.pool.ntp.org%20iburst%0A%0Aserver%200.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%201.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%202.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010%0Aserver%203.rhel.pool.ntp.org%20minpoll%204%20maxpoll%2010
        mode: 0600
        path: /etc/chrony.d/10-rhel-pool-and-servers.conf
        overwrite: true
Note that this needs to be done for each
MachineConfigPool

Rationale:

Synchronizing with an NTP server makes it possible to collate system logs from multiple sources or correlate computer events with real time events.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%20Allow%20for%20extra%20configuration%20files.%20This%20is%20useful%0A%23%20for%20admins%20specifying%20their%20own%20NTP%20servers%0Ainclude%20/etc/chrony.d/%2A.conf%0A%0A%23%20Set%20chronyd%20as%20client-only.%0Aport%200%0A%0A%23%20Disable%20chronyc%20from%20the%20network%0Acmdport%200%0A%0A%23%20Record%20the%20rate%20at%20which%20the%20system%20clock%20gains/losses%20time.%0Adriftfile%20/var/lib/chrony/drift%0A%0A%23%20Allow%20the%20system%20clock%20to%20be%20stepped%20in%20the%20first%20three%20updates%0A%23%20if%20its%20offset%20is%20larger%20than%201%20second.%0Amakestep%201.0%203%0A%0A%23%20Enable%20kernel%20synchronization%20of%20the%20real-time%20clock%20%28RTC%29.%0Artcsync%0A%0A%23%20Enable%20hardware%20timestamping%20on%20all%20interfaces%20that%20support%20it.%0A%23hwtimestamp%20%2A%0A%0A%23%20Increase%20the%20minimum%20number%20of%20selectable%20sources%20required%20to%20adjust%0A%23%20the%20system%20clock.%0A%23minsources%202%0A%0A%23%20Allow%20NTP%20client%20access%20from%20local%20network.%0A%23allow%20192.168.0.0/16%0A%0A%23%20Serve%20time%20even%20if%20not%20synchronized%20to%20a%20time%20source.%0A%23local%20stratum%2010%0A%0A%23%20Require%20authentication%20%28nts%20or%20key%20option%29%20for%20all%20NTP%20sources.%0A%23authselectmode%20require%0A%0A%23%20Specify%20file%20containing%20keys%20for%20NTP%20authentication.%0Akeyfile%20/etc/chrony.keys%0A%0A%23%20Insert/delete%20leap%20seconds%20by%20slewing%20instead%20of%20stepping.%0A%23leapsecmode%20slew%0A%0A%23%20Get%20TAI-UTC%20offset%20and%20leap%20seconds%20from%20the%20system%20tz%20database.%0Aleapsectz%20right/UTC%0A%0A%23%20Specify%20directory%20for%20log%20files.%0Alogdir%20/var/log/chrony%0A%0A%23%20Select%20which%20information%20is%20logged.%0A%23log%20measurements%20statistics%20tracking }}
        mode: 420
        overwrite: true
        path: /etc/chrony.conf
      - contents:
          source: data:,
        mode: 420
        overwrite: true
        path: /etc/chrony.d/.mco-keep
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20ntp%20server%0A%23%20%7B%7B.var_multiple_time_servers%7D%7D%20we%20have%20to%20put%20variable%20array%20name%20here%20for%20mutilines%20remediation%0A%7B%7B%24var_time_service_set_maxpoll%3A%3D.var_time_service_set_maxpoll%7D%7D%0A%7B%7Brange%20%24element%3A%3D.var_multiple_time_servers%7CtoArrayByComma%7D%7Dserver%20%7B%7B%24element%7D%7D%20minpoll%204%20maxpoll%20%7B%7B%24var_time_service_set_maxpoll%7D%7D%0A%7B%7Bend%7D%7D }}
        mode: 420
        overwrite: true
        path: /etc/chrony.d/ntp-server.conf

SSH Server   [ref]group

The SSH protocol is recommended for remote login and remote file transfer. SSH provides confidentiality and integrity for data exchanged between two systems, as well as server authentication, through the use of public key cryptography. The implementation included with the system is called OpenSSH, and more detailed documentation is available from its website, https://www.openssh.com. Its server program is called sshd and provided by the RPM package openssh-server.

contains 9 rules

Configure OpenSSH Server if Necessary   [ref]group

If the system needs to act as an SSH server, then certain changes should be made to the OpenSSH daemon configuration file /etc/ssh/sshd_config. The following recommendations can be applied to this file. See the sshd_config(5) man page for more detailed information.

contains 4 rules

Set SSH Client Alive Count Max   [ref]rule

The SSH server sends at most ClientAliveCountMax messages during a SSH session and waits for a response from the SSH client. The option ClientAliveInterval configures timeout after each ClientAliveCountMax message. If the SSH server does not receive a response from the client, then the connection is considered unresponsive and terminated. For SSH earlier than v8.2, a ClientAliveCountMax value of 0 causes a timeout precisely when the ClientAliveInterval is set. Starting with v8.2, a value of 0 disables the timeout functionality completely. If the option is set to a number greater than 0, then the session will be disconnected after ClientAliveInterval * ClientAliveCountMax seconds without receiving a keep alive message.

Rationale:

This ensures a user login will be terminated as soon as the ClientAliveInterval is reached.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:false
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0A%23%09%24OpenBSD%3A%20sshd_config%2Cv%201.103%202018/04/09%2020%3A41%3A22%20tj%20Exp%20%24%0A%0A%23%20This%20is%20the%20sshd%20server%20system-wide%20configuration%20file.%20%20See%0A%23%20sshd_config%285%29%20for%20more%20information.%0A%0A%23%20This%20sshd%20was%20compiled%20with%20PATH%3D/usr/local/bin%3A/usr/bin%3A/usr/local/sbin%3A/usr/sbin%0A%0AInclude%20/etc/ssh/sshd_config.d/%2A.conf%0A%0A%23%20The%20strategy%20used%20for%20options%20in%20the%20default%20sshd_config%20shipped%20with%0A%23%20OpenSSH%20is%20to%20specify%20options%20with%20their%20default%20value%20where%0A%23%20possible%2C%20but%20leave%20them%20commented.%20%20Uncommented%20options%20override%20the%0A%23%20default%20value.%0A%0A%23%20If%20you%20want%20to%20change%20the%20port%20on%20a%20SELinux%20system%2C%20you%20have%20to%20tell%0A%23%20SELinux%20about%20this%20change.%0A%23%20semanage%20port%20-a%20-t%20ssh_port_t%20-p%20tcp%20%23PORTNUMBER%0A%23%0A%23Port%2022%0A%23AddressFamily%20any%0A%23ListenAddress%200.0.0.0%0A%23ListenAddress%20%3A%3A%0A%0AHostKey%20/etc/ssh/ssh_host_rsa_key%0AHostKey%20/etc/ssh/ssh_host_ecdsa_key%0AHostKey%20/etc/ssh/ssh_host_ed25519_key%0A%0A%23%20Ciphers%20and%20keying%0ARekeyLimit%20%7B%7B.var_rekey_limit_size%7D%7D%20%7B%7B.var_rekey_limit_time%7D%7D%0A%0A%23%20System-wide%20Crypto%20policy%3A%0A%23%20This%20system%20is%20following%20system-wide%20crypto%20policy.%20The%20changes%20to%0A%23%20Ciphers%2C%20MACs%2C%20KexAlgoritms%20and%20GSSAPIKexAlgorithsm%20will%20not%20have%20any%0A%23%20effect%20here.%20They%20will%20be%20overridden%20by%20command-line%20options%20passed%20on%0A%23%20the%20server%20start%20up.%0A%23%20To%20opt%20out%2C%20uncomment%20a%20line%20with%20redefinition%20of%20%20CRYPTO_POLICY%3D%0A%23%20variable%20in%20%20/etc/sysconfig/sshd%20%20to%20overwrite%20the%20policy.%0A%23%20For%20more%20information%2C%20see%20manual%20page%20for%20update-crypto-policies%288%29.%0A%0A%23%20Logging%0A%23SyslogFacility%20AUTH%0ASyslogFacility%20AUTHPRIV%0ALogLevel%20INFO%0A%0A%23%20Authentication%3A%0A%0A%23LoginGraceTime%20%7B%7B.var_sshd_set_login_grace_time%7D%7D%0APermitRootLogin%20no%0AStrictModes%20yes%0A%23MaxAuthTries%206%0A%23MaxSessions%2010%0A%0APubkeyAuthentication%20yes%0A%0A%23%20The%20default%20is%20to%20check%20both%20.ssh/authorized_keys%20and%20.ssh/authorized_keys2%0A%23%20but%20this%20is%20overridden%20so%20installations%20will%20only%20check%20.ssh/authorized_keys%0AAuthorizedKeysFile%09.ssh/authorized_keys%0A%0A%23AuthorizedPrincipalsFile%20none%0A%0A%23AuthorizedKeysCommand%20none%0A%23AuthorizedKeysCommandUser%20nobody%0A%0A%23%20For%20this%20to%20work%20you%20will%20also%20need%20host%20keys%20in%20/etc/ssh/ssh_known_hosts%0AHostbasedAuthentication%20no%0A%23%20Change%20to%20yes%20if%20you%20don%27t%20trust%20~/.ssh/known_hosts%20for%0A%23%20HostbasedAuthentication%0AIgnoreUserKnownHosts%20yes%0A%23%20Don%27t%20read%20the%20user%27s%20~/.rhosts%20and%20~/.shosts%20files%0AIgnoreRhosts%20yes%0A%0A%23%20To%20disable%20tunneled%20clear%20text%20passwords%2C%20change%20to%20no%20here%21%0A%23PasswordAuthentication%20yes%0APermitEmptyPasswords%20no%0APasswordAuthentication%20no%0A%0A%23%20Change%20to%20no%20to%20disable%20s/key%20passwords%0A%23ChallengeResponseAuthentication%20yes%0AChallengeResponseAuthentication%20no%0A%0A%23%20Kerberos%20options%0AKerberosAuthentication%20no%0A%23KerberosOrLocalPasswd%20yes%0A%23KerberosTicketCleanup%20yes%0A%23KerberosGetAFSToken%20no%0A%23KerberosUseKuserok%20yes%0A%0A%23%20GSSAPI%20options%0AGSSAPIAuthentication%20no%0AGSSAPICleanupCredentials%20no%0A%23GSSAPIStrictAcceptorCheck%20yes%0A%23GSSAPIKeyExchange%20no%0A%23GSSAPIEnablek5users%20no%0A%0A%23%20Set%20this%20to%20%27yes%27%20to%20enable%20PAM%20authentication%2C%20account%20processing%2C%0A%23%20and%20session%20processing.%20If%20this%20is%20enabled%2C%20PAM%20authentication%20will%0A%23%20be%20allowed%20through%20the%20ChallengeResponseAuthentication%20and%0A%23%20PasswordAuthentication.%20%20Depending%20on%20your%20PAM%20configuration%2C%0A%23%20PAM%20authentication%20via%20ChallengeResponseAuthentication%20may%20bypass%0A%23%20the%20setting%20of%20%22PermitRootLogin%20without-password%22.%0A%23%20If%20you%20just%20want%20the%20PAM%20account%20and%20session%20checks%20to%20run%20without%0A%23%20PAM%20authentication%2C%20then%20enable%20this%20but%20set%20PasswordAuthentication%0A%23%20and%20ChallengeResponseAuthentication%20to%20%27no%27.%0A%23%20WARNING%3A%20%27UsePAM%20no%27%20is%20not%20supported%20in%20Fedora%20and%20may%20cause%20several%0A%23%20problems.%0AUsePAM%20yes%0A%0A%23AllowAgentForwarding%20yes%0A%23AllowTcpForwarding%20yes%0A%23GatewayPorts%20no%0AX11Forwarding%20yes%0A%23X11DisplayOffset%2010%0A%23X11UseLocalhost%20yes%0A%23PermitTTY%20yes%0A%0A%23%20It%20is%20recommended%20to%20use%20pam_motd%20in%20/etc/pam.d/sshd%20instead%20of%20PrintMotd%2C%0A%23%20as%20it%20is%20more%20configurable%20and%20versatile%20than%20the%20built-in%20version.%0APrintMotd%20no%0A%0APrintLastLog%20yes%0A%23TCPKeepAlive%20yes%0APermitUserEnvironment%20no%0ACompression%20%7B%7B.var_sshd_disable_compression%7D%7D%0AClientAliveInterval%20%7B%7B.sshd_idle_timeout_value%7D%7D%0AClientAliveCountMax%20%7B%7B.var_sshd_set_keepalive%7D%7D%0A%23UseDNS%20no%0A%23PidFile%20/var/run/sshd.pid%0A%23MaxStartups%2010%3A30%3A100%0A%23PermitTunnel%20no%0A%23ChrootDirectory%20none%0A%23VersionAddendum%20none%0A%0A%23%20no%20default%20banner%20path%0ABanner%20/etc/issue%0A%0A%23%20Accept%20locale-related%20environment%20variables%0AAcceptEnv%20LANG%20LC_CTYPE%20LC_NUMERIC%20LC_TIME%20LC_COLLATE%20LC_MONETARY%20LC_MESSAGES%0AAcceptEnv%20LC_PAPER%20LC_NAME%20LC_ADDRESS%20LC_TELEPHONE%20LC_MEASUREMENT%0AAcceptEnv%20LC_IDENTIFICATION%20LC_ALL%20LANGUAGE%0AAcceptEnv%20XMODIFIERS%0A%0A%23%20override%20default%20of%20no%20subsystems%0ASubsystem%09sftp%09/usr/libexec/openssh/sftp-server%0A%0A%23%20Example%20of%20overriding%20settings%20on%20a%20per-user%20basis%0A%23Match%20User%20anoncvs%0A%23%09X11Forwarding%20no%0A%23%09AllowTcpForwarding%20no%0A%23%09PermitTTY%20no%0A%23%09ForceCommand%20cvs%20server%0A%0AUsePrivilegeSeparation%20%7B%7B.var_sshd_priv_separation%7D%7D }}
        mode: 0600
        path: /etc/ssh/sshd_config
        overwrite: true

Set SSH Client Alive Interval   [ref]rule

SSH allows administrators to set a network responsiveness timeout interval. After this interval has passed, the unresponsive client will be automatically logged out.

To set this timeout interval, edit the following line in /etc/ssh/sshd_config as follows:

ClientAliveInterval 300


The timeout interval is given in seconds. For example, have a timeout of 10 minutes, set interval to 600.

If a shorter timeout has already been set for the login shell, that value will preempt any SSH setting made in /etc/ssh/sshd_config. Keep in mind that some processes may stop SSH from correctly detecting that the user is idle.

Warning:  SSH disconnecting unresponsive clients will not have desired effect without also configuring ClientAliveCountMax in the SSH service configuration.
Warning:  Following conditions may prevent the SSH session to time out:
  • Remote processes on the remote machine generates output. As the output has to be transferred over the network to the client, the timeout is reset every time such transfer happens.
  • Any scp or sftp activity by the same user to the host resets the timeout.
Rationale:

Terminating an idle ssh session within a short time period reduces the window of opportunity for unauthorized personnel to take control of a management session enabled on the console or console port that has been let unattended.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:false
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0A%23%09%24OpenBSD%3A%20sshd_config%2Cv%201.103%202018/04/09%2020%3A41%3A22%20tj%20Exp%20%24%0A%0A%23%20This%20is%20the%20sshd%20server%20system-wide%20configuration%20file.%20%20See%0A%23%20sshd_config%285%29%20for%20more%20information.%0A%0A%23%20This%20sshd%20was%20compiled%20with%20PATH%3D/usr/local/bin%3A/usr/bin%3A/usr/local/sbin%3A/usr/sbin%0A%0AInclude%20/etc/ssh/sshd_config.d/%2A.conf%0A%0A%23%20The%20strategy%20used%20for%20options%20in%20the%20default%20sshd_config%20shipped%20with%0A%23%20OpenSSH%20is%20to%20specify%20options%20with%20their%20default%20value%20where%0A%23%20possible%2C%20but%20leave%20them%20commented.%20%20Uncommented%20options%20override%20the%0A%23%20default%20value.%0A%0A%23%20If%20you%20want%20to%20change%20the%20port%20on%20a%20SELinux%20system%2C%20you%20have%20to%20tell%0A%23%20SELinux%20about%20this%20change.%0A%23%20semanage%20port%20-a%20-t%20ssh_port_t%20-p%20tcp%20%23PORTNUMBER%0A%23%0A%23Port%2022%0A%23AddressFamily%20any%0A%23ListenAddress%200.0.0.0%0A%23ListenAddress%20%3A%3A%0A%0AHostKey%20/etc/ssh/ssh_host_rsa_key%0AHostKey%20/etc/ssh/ssh_host_ecdsa_key%0AHostKey%20/etc/ssh/ssh_host_ed25519_key%0A%0A%23%20Ciphers%20and%20keying%0ARekeyLimit%20%7B%7B.var_rekey_limit_size%7D%7D%20%7B%7B.var_rekey_limit_time%7D%7D%0A%0A%23%20System-wide%20Crypto%20policy%3A%0A%23%20This%20system%20is%20following%20system-wide%20crypto%20policy.%20The%20changes%20to%0A%23%20Ciphers%2C%20MACs%2C%20KexAlgoritms%20and%20GSSAPIKexAlgorithsm%20will%20not%20have%20any%0A%23%20effect%20here.%20They%20will%20be%20overridden%20by%20command-line%20options%20passed%20on%0A%23%20the%20server%20start%20up.%0A%23%20To%20opt%20out%2C%20uncomment%20a%20line%20with%20redefinition%20of%20%20CRYPTO_POLICY%3D%0A%23%20variable%20in%20%20/etc/sysconfig/sshd%20%20to%20overwrite%20the%20policy.%0A%23%20For%20more%20information%2C%20see%20manual%20page%20for%20update-crypto-policies%288%29.%0A%0A%23%20Logging%0A%23SyslogFacility%20AUTH%0ASyslogFacility%20AUTHPRIV%0ALogLevel%20INFO%0A%0A%23%20Authentication%3A%0A%0A%23LoginGraceTime%20%7B%7B.var_sshd_set_login_grace_time%7D%7D%0APermitRootLogin%20no%0AStrictModes%20yes%0A%23MaxAuthTries%206%0A%23MaxSessions%2010%0A%0APubkeyAuthentication%20yes%0A%0A%23%20The%20default%20is%20to%20check%20both%20.ssh/authorized_keys%20and%20.ssh/authorized_keys2%0A%23%20but%20this%20is%20overridden%20so%20installations%20will%20only%20check%20.ssh/authorized_keys%0AAuthorizedKeysFile%09.ssh/authorized_keys%0A%0A%23AuthorizedPrincipalsFile%20none%0A%0A%23AuthorizedKeysCommand%20none%0A%23AuthorizedKeysCommandUser%20nobody%0A%0A%23%20For%20this%20to%20work%20you%20will%20also%20need%20host%20keys%20in%20/etc/ssh/ssh_known_hosts%0AHostbasedAuthentication%20no%0A%23%20Change%20to%20yes%20if%20you%20don%27t%20trust%20~/.ssh/known_hosts%20for%0A%23%20HostbasedAuthentication%0AIgnoreUserKnownHosts%20yes%0A%23%20Don%27t%20read%20the%20user%27s%20~/.rhosts%20and%20~/.shosts%20files%0AIgnoreRhosts%20yes%0A%0A%23%20To%20disable%20tunneled%20clear%20text%20passwords%2C%20change%20to%20no%20here%21%0A%23PasswordAuthentication%20yes%0APermitEmptyPasswords%20no%0APasswordAuthentication%20no%0A%0A%23%20Change%20to%20no%20to%20disable%20s/key%20passwords%0A%23ChallengeResponseAuthentication%20yes%0AChallengeResponseAuthentication%20no%0A%0A%23%20Kerberos%20options%0AKerberosAuthentication%20no%0A%23KerberosOrLocalPasswd%20yes%0A%23KerberosTicketCleanup%20yes%0A%23KerberosGetAFSToken%20no%0A%23KerberosUseKuserok%20yes%0A%0A%23%20GSSAPI%20options%0AGSSAPIAuthentication%20no%0AGSSAPICleanupCredentials%20no%0A%23GSSAPIStrictAcceptorCheck%20yes%0A%23GSSAPIKeyExchange%20no%0A%23GSSAPIEnablek5users%20no%0A%0A%23%20Set%20this%20to%20%27yes%27%20to%20enable%20PAM%20authentication%2C%20account%20processing%2C%0A%23%20and%20session%20processing.%20If%20this%20is%20enabled%2C%20PAM%20authentication%20will%0A%23%20be%20allowed%20through%20the%20ChallengeResponseAuthentication%20and%0A%23%20PasswordAuthentication.%20%20Depending%20on%20your%20PAM%20configuration%2C%0A%23%20PAM%20authentication%20via%20ChallengeResponseAuthentication%20may%20bypass%0A%23%20the%20setting%20of%20%22PermitRootLogin%20without-password%22.%0A%23%20If%20you%20just%20want%20the%20PAM%20account%20and%20session%20checks%20to%20run%20without%0A%23%20PAM%20authentication%2C%20then%20enable%20this%20but%20set%20PasswordAuthentication%0A%23%20and%20ChallengeResponseAuthentication%20to%20%27no%27.%0A%23%20WARNING%3A%20%27UsePAM%20no%27%20is%20not%20supported%20in%20Fedora%20and%20may%20cause%20several%0A%23%20problems.%0AUsePAM%20yes%0A%0A%23AllowAgentForwarding%20yes%0A%23AllowTcpForwarding%20yes%0A%23GatewayPorts%20no%0AX11Forwarding%20yes%0A%23X11DisplayOffset%2010%0A%23X11UseLocalhost%20yes%0A%23PermitTTY%20yes%0A%0A%23%20It%20is%20recommended%20to%20use%20pam_motd%20in%20/etc/pam.d/sshd%20instead%20of%20PrintMotd%2C%0A%23%20as%20it%20is%20more%20configurable%20and%20versatile%20than%20the%20built-in%20version.%0APrintMotd%20no%0A%0APrintLastLog%20yes%0A%23TCPKeepAlive%20yes%0APermitUserEnvironment%20no%0ACompression%20%7B%7B.var_sshd_disable_compression%7D%7D%0AClientAliveInterval%20%7B%7B.sshd_idle_timeout_value%7D%7D%0AClientAliveCountMax%20%7B%7B.var_sshd_set_keepalive%7D%7D%0A%23UseDNS%20no%0A%23PidFile%20/var/run/sshd.pid%0A%23MaxStartups%2010%3A30%3A100%0A%23PermitTunnel%20no%0A%23ChrootDirectory%20none%0A%23VersionAddendum%20none%0A%0A%23%20no%20default%20banner%20path%0ABanner%20/etc/issue%0A%0A%23%20Accept%20locale-related%20environment%20variables%0AAcceptEnv%20LANG%20LC_CTYPE%20LC_NUMERIC%20LC_TIME%20LC_COLLATE%20LC_MONETARY%20LC_MESSAGES%0AAcceptEnv%20LC_PAPER%20LC_NAME%20LC_ADDRESS%20LC_TELEPHONE%20LC_MEASUREMENT%0AAcceptEnv%20LC_IDENTIFICATION%20LC_ALL%20LANGUAGE%0AAcceptEnv%20XMODIFIERS%0A%0A%23%20override%20default%20of%20no%20subsystems%0ASubsystem%09sftp%09/usr/libexec/openssh/sftp-server%0A%0A%23%20Example%20of%20overriding%20settings%20on%20a%20per-user%20basis%0A%23Match%20User%20anoncvs%0A%23%09X11Forwarding%20no%0A%23%09AllowTcpForwarding%20no%0A%23%09PermitTTY%20no%0A%23%09ForceCommand%20cvs%20server%0A%0AUsePrivilegeSeparation%20%7B%7B.var_sshd_priv_separation%7D%7D }}
        mode: 0600
        path: /etc/ssh/sshd_config
        overwrite: true

Disable SSH Support for .rhosts Files   [ref]rule

SSH can emulate the behavior of the obsolete rsh command in allowing users to enable insecure access to their accounts via .rhosts files.
The default SSH configuration disables support for .rhosts. The appropriate configuration is used if no value is set for IgnoreRhosts.
To explicitly disable support for .rhosts files, add or correct the following line in /etc/ssh/sshd_config:

IgnoreRhosts yes

Rationale:

SSH trust relationships mean a compromise on one host can allow an attacker to move trivially to other hosts.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:false
Strategy:restrict
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0A%23%09%24OpenBSD%3A%20sshd_config%2Cv%201.103%202018/04/09%2020%3A41%3A22%20tj%20Exp%20%24%0A%0A%23%20This%20is%20the%20sshd%20server%20system-wide%20configuration%20file.%20%20See%0A%23%20sshd_config%285%29%20for%20more%20information.%0A%0A%23%20This%20sshd%20was%20compiled%20with%20PATH%3D/usr/local/bin%3A/usr/bin%3A/usr/local/sbin%3A/usr/sbin%0A%0AInclude%20/etc/ssh/sshd_config.d/%2A.conf%0A%0A%23%20The%20strategy%20used%20for%20options%20in%20the%20default%20sshd_config%20shipped%20with%0A%23%20OpenSSH%20is%20to%20specify%20options%20with%20their%20default%20value%20where%0A%23%20possible%2C%20but%20leave%20them%20commented.%20%20Uncommented%20options%20override%20the%0A%23%20default%20value.%0A%0A%23%20If%20you%20want%20to%20change%20the%20port%20on%20a%20SELinux%20system%2C%20you%20have%20to%20tell%0A%23%20SELinux%20about%20this%20change.%0A%23%20semanage%20port%20-a%20-t%20ssh_port_t%20-p%20tcp%20%23PORTNUMBER%0A%23%0A%23Port%2022%0A%23AddressFamily%20any%0A%23ListenAddress%200.0.0.0%0A%23ListenAddress%20%3A%3A%0A%0AHostKey%20/etc/ssh/ssh_host_rsa_key%0AHostKey%20/etc/ssh/ssh_host_ecdsa_key%0AHostKey%20/etc/ssh/ssh_host_ed25519_key%0A%0A%23%20Ciphers%20and%20keying%0ARekeyLimit%20%7B%7B.var_rekey_limit_size%7D%7D%20%7B%7B.var_rekey_limit_time%7D%7D%0A%0A%23%20System-wide%20Crypto%20policy%3A%0A%23%20This%20system%20is%20following%20system-wide%20crypto%20policy.%20The%20changes%20to%0A%23%20Ciphers%2C%20MACs%2C%20KexAlgoritms%20and%20GSSAPIKexAlgorithsm%20will%20not%20have%20any%0A%23%20effect%20here.%20They%20will%20be%20overridden%20by%20command-line%20options%20passed%20on%0A%23%20the%20server%20start%20up.%0A%23%20To%20opt%20out%2C%20uncomment%20a%20line%20with%20redefinition%20of%20%20CRYPTO_POLICY%3D%0A%23%20variable%20in%20%20/etc/sysconfig/sshd%20%20to%20overwrite%20the%20policy.%0A%23%20For%20more%20information%2C%20see%20manual%20page%20for%20update-crypto-policies%288%29.%0A%0A%23%20Logging%0A%23SyslogFacility%20AUTH%0ASyslogFacility%20AUTHPRIV%0ALogLevel%20INFO%0A%0A%23%20Authentication%3A%0A%0A%23LoginGraceTime%20%7B%7B.var_sshd_set_login_grace_time%7D%7D%0APermitRootLogin%20no%0AStrictModes%20yes%0A%23MaxAuthTries%206%0A%23MaxSessions%2010%0A%0APubkeyAuthentication%20yes%0A%0A%23%20The%20default%20is%20to%20check%20both%20.ssh/authorized_keys%20and%20.ssh/authorized_keys2%0A%23%20but%20this%20is%20overridden%20so%20installations%20will%20only%20check%20.ssh/authorized_keys%0AAuthorizedKeysFile%09.ssh/authorized_keys%0A%0A%23AuthorizedPrincipalsFile%20none%0A%0A%23AuthorizedKeysCommand%20none%0A%23AuthorizedKeysCommandUser%20nobody%0A%0A%23%20For%20this%20to%20work%20you%20will%20also%20need%20host%20keys%20in%20/etc/ssh/ssh_known_hosts%0AHostbasedAuthentication%20no%0A%23%20Change%20to%20yes%20if%20you%20don%27t%20trust%20~/.ssh/known_hosts%20for%0A%23%20HostbasedAuthentication%0AIgnoreUserKnownHosts%20yes%0A%23%20Don%27t%20read%20the%20user%27s%20~/.rhosts%20and%20~/.shosts%20files%0AIgnoreRhosts%20yes%0A%0A%23%20To%20disable%20tunneled%20clear%20text%20passwords%2C%20change%20to%20no%20here%21%0A%23PasswordAuthentication%20yes%0APermitEmptyPasswords%20no%0APasswordAuthentication%20no%0A%0A%23%20Change%20to%20no%20to%20disable%20s/key%20passwords%0A%23ChallengeResponseAuthentication%20yes%0AChallengeResponseAuthentication%20no%0A%0A%23%20Kerberos%20options%0AKerberosAuthentication%20no%0A%23KerberosOrLocalPasswd%20yes%0A%23KerberosTicketCleanup%20yes%0A%23KerberosGetAFSToken%20no%0A%23KerberosUseKuserok%20yes%0A%0A%23%20GSSAPI%20options%0AGSSAPIAuthentication%20no%0AGSSAPICleanupCredentials%20no%0A%23GSSAPIStrictAcceptorCheck%20yes%0A%23GSSAPIKeyExchange%20no%0A%23GSSAPIEnablek5users%20no%0A%0A%23%20Set%20this%20to%20%27yes%27%20to%20enable%20PAM%20authentication%2C%20account%20processing%2C%0A%23%20and%20session%20processing.%20If%20this%20is%20enabled%2C%20PAM%20authentication%20will%0A%23%20be%20allowed%20through%20the%20ChallengeResponseAuthentication%20and%0A%23%20PasswordAuthentication.%20%20Depending%20on%20your%20PAM%20configuration%2C%0A%23%20PAM%20authentication%20via%20ChallengeResponseAuthentication%20may%20bypass%0A%23%20the%20setting%20of%20%22PermitRootLogin%20without-password%22.%0A%23%20If%20you%20just%20want%20the%20PAM%20account%20and%20session%20checks%20to%20run%20without%0A%23%20PAM%20authentication%2C%20then%20enable%20this%20but%20set%20PasswordAuthentication%0A%23%20and%20ChallengeResponseAuthentication%20to%20%27no%27.%0A%23%20WARNING%3A%20%27UsePAM%20no%27%20is%20not%20supported%20in%20Fedora%20and%20may%20cause%20several%0A%23%20problems.%0AUsePAM%20yes%0A%0A%23AllowAgentForwarding%20yes%0A%23AllowTcpForwarding%20yes%0A%23GatewayPorts%20no%0AX11Forwarding%20yes%0A%23X11DisplayOffset%2010%0A%23X11UseLocalhost%20yes%0A%23PermitTTY%20yes%0A%0A%23%20It%20is%20recommended%20to%20use%20pam_motd%20in%20/etc/pam.d/sshd%20instead%20of%20PrintMotd%2C%0A%23%20as%20it%20is%20more%20configurable%20and%20versatile%20than%20the%20built-in%20version.%0APrintMotd%20no%0A%0APrintLastLog%20yes%0A%23TCPKeepAlive%20yes%0APermitUserEnvironment%20no%0ACompression%20%7B%7B.var_sshd_disable_compression%7D%7D%0AClientAliveInterval%20%7B%7B.sshd_idle_timeout_value%7D%7D%0AClientAliveCountMax%20%7B%7B.var_sshd_set_keepalive%7D%7D%0A%23UseDNS%20no%0A%23PidFile%20/var/run/sshd.pid%0A%23MaxStartups%2010%3A30%3A100%0A%23PermitTunnel%20no%0A%23ChrootDirectory%20none%0A%23VersionAddendum%20none%0A%0A%23%20no%20default%20banner%20path%0ABanner%20/etc/issue%0A%0A%23%20Accept%20locale-related%20environment%20variables%0AAcceptEnv%20LANG%20LC_CTYPE%20LC_NUMERIC%20LC_TIME%20LC_COLLATE%20LC_MONETARY%20LC_MESSAGES%0AAcceptEnv%20LC_PAPER%20LC_NAME%20LC_ADDRESS%20LC_TELEPHONE%20LC_MEASUREMENT%0AAcceptEnv%20LC_IDENTIFICATION%20LC_ALL%20LANGUAGE%0AAcceptEnv%20XMODIFIERS%0A%0A%23%20override%20default%20of%20no%20subsystems%0ASubsystem%09sftp%09/usr/libexec/openssh/sftp-server%0A%0A%23%20Example%20of%20overriding%20settings%20on%20a%20per-user%20basis%0A%23Match%20User%20anoncvs%0A%23%09X11Forwarding%20no%0A%23%09AllowTcpForwarding%20no%0A%23%09PermitTTY%20no%0A%23%09ForceCommand%20cvs%20server%0A%0AUsePrivilegeSeparation%20%7B%7B.var_sshd_priv_separation%7D%7D }}
        mode: 0600
        path: /etc/ssh/sshd_config
        overwrite: true

Limit Users' SSH Access   [ref]rule

By default, the SSH configuration allows any user with an account to access the system. There are several options available to limit which users and group can access the system via SSH. It is recommended that at least one of the following options be leveraged: - AllowUsers variable gives the system administrator the option of allowing specific users to ssh into the system. The list consists of space separated user names. Numeric user IDs are not recognized with this variable. If a system administrator wants to restrict user access further by specifically allowing a user's access only from a particular host, the entry can be specified in the form of user@host. - AllowGroups variable gives the system administrator the option of allowing specific groups of users to ssh into the system. The list consists of space separated group names. Numeric group IDs are not recognized with this variable. - DenyUsers variable gives the system administrator the option of denying specific users to ssh into the system. The list consists of space separated user names. Numeric user IDs are not recognized with this variable. If a system administrator wants to restrict user access further by specifically denying a user's access from a particular host, the entry can be specified in the form of user@host. - DenyGroups variable gives the system administrator the option of denying specific groups of users to ssh into the system. The list consists of space separated group names. Numeric group IDs are not recognized with this variable.

Warning:  Automated remediation is not available for this configuration check because each system has unique user names and group names.
Rationale:

Specifying which accounts are allowed SSH access into the system reduces the possibility of unauthorized access to the system.

Severity:  unknown

Verify Group Who Owns SSH Server config file   [ref]rule

To properly set the group owner of /etc/ssh/sshd_config, run the command:

$ sudo chgrp root /etc/ssh/sshd_config

Rationale:

Service configuration files enable or disable features of their respective services that if configured incorrectly can lead to insecure and vulnerable configurations. Therefore, service configuration files should be owned by the correct group to prevent unauthorized changes.

Severity:  medium

Verify Owner on SSH Server config file   [ref]rule

To properly set the owner of /etc/ssh/sshd_config, run the command:

$ sudo chown root /etc/ssh/sshd_config 

Rationale:

Service configuration files enable or disable features of their respective services that if configured incorrectly can lead to insecure and vulnerable configurations. Therefore, service configuration files should be owned by the correct group to prevent unauthorized changes.

Severity:  medium

Verify Permissions on SSH Server config file   [ref]rule

To properly set the permissions of /etc/ssh/sshd_config, run the command:

$ sudo chmod 0600 /etc/ssh/sshd_config

Rationale:

Service configuration files enable or disable features of their respective services that if configured incorrectly can lead to insecure and vulnerable configurations. Therefore, service configuration files should be owned by the correct group to prevent unauthorized changes.

Severity:  medium

Verify Permissions on SSH Server Private *_key Key Files   [ref]rule

SSH server private keys - files that match the /etc/ssh/*_key glob, have to have restricted permissions. If those files are owned by the root user and the root group, they have to have the 0640 permission or stricter. If they are owned by the root user, but by a dedicated group ssh_keys, they can have the 0640 permission or stricter.

Rationale:

If an unauthorized user obtains the private SSH host key file, the host could be impersonated.

Severity:  medium

Verify Permissions on SSH Server Public *.pub Key Files   [ref]rule

To properly set the permissions of /etc/ssh/*.pub, run the command:

$ sudo chmod 0644 /etc/ssh/*.pub

Rationale:

If a public host key file is modified by an unauthorized user, the SSH service may be compromised.

Severity:  medium

USBGuard daemon   [ref]group

The USBGuard daemon enforces the USB device authorization policy for all USB devices.

contains 4 rules

Install usbguard Package   [ref]rule

The usbguard package can be installed with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-usbguard-install
spec:
  config:
    ignition:
      version: 3.1.0
  extensions:
    - usbguard

This will install the usbguard package in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

usbguard is a software framework that helps to protect against rogue USB devices by implementing basic whitelisting/blacklisting capabilities based on USB device attributes.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  extensions:
    - usbguard

Enable the USBGuard Service   [ref]rule

The USBGuard service should be enabled. The usbguard service can be enabled with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-usbguard-enable
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: usbguard.service
        enabled: true

This will enable the usbguard service in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

The usbguard service must be running in order to enforce the USB device authorization policy for all USB devices.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  annotations:
    complianceascode.io/depends-on: xccdf_org.ssgproject.content_rule_package_usbguard_installed
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: usbguard.service
        enabled: true

Log USBGuard daemon audit events using Linux Audit   [ref]rule

To configure USBGuard daemon to log via Linux Audit (as opposed directly to a file), AuditBackend option in /etc/usbguard/usbguard-daemon.conf needs to be set to LinuxAudit.

Rationale:

Using the Linux Audit logging allows for centralized trace of events.

Severity:  low

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  annotations:
    complianceascode.io/depends-on: xccdf_org.ssgproject.content_rule_package_usbguard_installed
    complianceascode.io/ocp-version: '>=4.7.0'
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0A%23%0A%23%20Rule%20set%20file%20path.%0A%23%0A%23%20The%20USBGuard%20daemon%20will%20use%20this%20file%20to%20load%20the%20policy%0A%23%20rule%20set%20from%20it%20and%20to%20write%20new%20rules%20received%20via%20the%0A%23%20IPC%20interface.%0A%23%0A%23%20RuleFile%3D/path/to/rules.conf%0A%23%0ARuleFile%3D/etc/usbguard/rules.conf%0A%0A%23%0A%23%20Rule%20set%20folder%20path.%0A%23%0A%23%20The%20USBGuard%20daemon%20will%20use%20this%20folder%20to%20load%20the%20policy%0A%23%20rule%20set%20from%20it%20and%20to%20write%20new%20rules%20received%20via%20the%0A%23%20IPC%20interface.%20Usually%2C%20we%20set%20the%20option%20to%0A%23%20/etc/usbguard/rules.d/.%20The%20USBGuard%20daemon%20is%20supposed%20to%0A%23%20behave%20like%20any%20other%20standard%20Linux%20daemon%20therefore%20it%0A%23%20loads%20rule%20files%20in%20alpha-numeric%20order.%20File%20names%20inside%0A%23%20RuleFolder%20directory%20should%20start%20with%20a%20two-digit%20number%0A%23%20prefix%20indicating%20the%20position%2C%20in%20which%20the%20rules%20are%0A%23%20scanned%20by%20the%20daemon.%0A%23%0A%23%20RuleFolder%3D/path/to/rulesfolder/%0A%23%0ARuleFolder%3D/etc/usbguard/rules.d/%0A%0A%23%0A%23%20Implicit%20policy%20target.%0A%23%0A%23%20How%20to%20treat%20devices%20that%20don%27t%20match%20any%20rule%20in%20the%0A%23%20policy.%20One%20of%3A%0A%23%0A%23%20%2A%20allow%20%20-%20authorize%20the%20device%0A%23%20%2A%20block%20%20-%20block%20the%20device%0A%23%20%2A%20reject%20-%20remove%20the%20device%0A%23%0AImplicitPolicyTarget%3Dblock%0A%0A%23%0A%23%20Present%20device%20policy.%0A%23%0A%23%20How%20to%20treat%20devices%20that%20are%20already%20connected%20when%20the%0A%23%20daemon%20starts.%20One%20of%3A%0A%23%0A%23%20%2A%20allow%20%20%20%20%20%20%20%20-%20authorize%20every%20present%20device%0A%23%20%2A%20block%20%20%20%20%20%20%20%20-%20deauthorize%20every%20present%20device%0A%23%20%2A%20reject%20%20%20%20%20%20%20-%20remove%20every%20present%20device%0A%23%20%2A%20keep%20%20%20%20%20%20%20%20%20-%20just%20sync%20the%20internal%20state%20and%20leave%20it%0A%23%20%2A%20apply-policy%20-%20evaluate%20the%20ruleset%20for%20every%20present%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20device%0A%23%0APresentDevicePolicy%3Dapply-policy%0A%0A%23%0A%23%20Present%20controller%20policy.%0A%23%0A%23%20How%20to%20treat%20USB%20controllers%20that%20are%20already%20connected%0A%23%20when%20the%20daemon%20starts.%20One%20of%3A%0A%23%0A%23%20%2A%20allow%20%20%20%20%20%20%20%20-%20authorize%20every%20present%20device%0A%23%20%2A%20block%20%20%20%20%20%20%20%20-%20deauthorize%20every%20present%20device%0A%23%20%2A%20reject%20%20%20%20%20%20%20-%20remove%20every%20present%20device%0A%23%20%2A%20keep%20%20%20%20%20%20%20%20%20-%20just%20sync%20the%20internal%20state%20and%20leave%20it%0A%23%20%2A%20apply-policy%20-%20evaluate%20the%20ruleset%20for%20every%20present%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20device%0A%23%0APresentControllerPolicy%3Dkeep%0A%0A%23%0A%23%20Inserted%20device%20policy.%0A%23%0A%23%20How%20to%20treat%20USB%20devices%20that%20are%20already%20connected%0A%23%20%2Aafter%2A%20the%20daemon%20starts.%20One%20of%3A%0A%23%0A%23%20%2A%20block%20%20%20%20%20%20%20%20-%20deauthorize%20every%20present%20device%0A%23%20%2A%20reject%20%20%20%20%20%20%20-%20remove%20every%20present%20device%0A%23%20%2A%20apply-policy%20-%20evaluate%20the%20ruleset%20for%20every%20present%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20device%0A%23%0AInsertedDevicePolicy%3Dapply-policy%0A%0A%23%0A%23%20Control%20which%20devices%20are%20authorized%20by%20default.%0A%23%0A%23%20The%20USBGuard%20daemon%20modifies%20some%20the%20default%20authorization%20state%20attributes%0A%23%20of%20controller%20devices.%20This%20setting%2C%20enables%20you%20to%20define%20what%20value%20the%0A%23%20default%20authorization%20is%20set%20to.%0A%23%0A%23%20%2A%20keep%20%20%20%20%20%20%20%20%20-%20do%20not%20change%20the%20authorization%20state%0A%23%20%2A%20none%20%20%20%20%20%20%20%20%20-%20every%20new%20device%20starts%20out%20deauthorized%0A%23%20%2A%20all%20%20%20%20%20%20%20%20%20%20-%20every%20new%20device%20starts%20out%20authorized%0A%23%20%2A%20internal%20%20%20%20%20-%20internal%20devices%20start%20out%20authorized%2C%20external%20devices%20start%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20out%20deauthorized%20%28this%20requires%20the%20ACPI%20tables%20to%20properly%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20label%20internal%20devices%2C%20and%20kernel%20support%29%0A%23%0A%23AuthorizedDefault%3Dnone%0A%0A%23%0A%23%20Restore%20controller%20device%20state.%0A%23%0A%23%20The%20USBGuard%20daemon%20modifies%20some%20attributes%20of%20controller%0A%23%20devices%20like%20the%20default%20authorization%20state%20of%20new%20child%20device%0A%23%20instances.%20Using%20this%20setting%2C%20you%20can%20control%20whether%20the%0A%23%20daemon%20will%20try%20to%20restore%20the%20attribute%20values%20to%20the%20state%0A%23%20before%20modification%20on%20shutdown.%0A%23%0A%23%20SECURITY%20CONSIDERATIONS%3A%20If%20set%20to%20true%2C%20the%20USB%20authorization%0A%23%20policy%20could%20be%20bypassed%20by%20performing%20some%20sort%20of%20attack%20on%20the%0A%23%20daemon%20%28via%20a%20local%20exploit%20or%20via%20a%20USB%20device%29%20to%20make%20it%20shutdown%0A%23%20and%20restore%20to%20the%20operating-system%20default%20state%20%28known%20to%20be%20permissive%29.%0A%23%0ARestoreControllerDeviceState%3Dfalse%0A%0A%23%0A%23%20Device%20manager%20backend%0A%23%0A%23%20Which%20device%20manager%20backend%20implementation%20to%20use.%20One%20of%3A%0A%23%0A%23%20%2A%20uevent%20%20%20-%20Netlink%20based%20implementation%20which%20uses%20sysfs%20to%20scan%20for%20present%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20devices%20and%20an%20uevent%20netlink%20socket%20for%20receiving%20USB%20device%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20related%20events.%0A%23%20%2A%20umockdev%20-%20umockdev%20based%20device%20manager%20capable%20of%20simulating%20devices%20based%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20on%20umockdev-record%20files.%20Useful%20for%20testing.%0A%23%0ADeviceManagerBackend%3Duevent%0A%0A%23%21%21%21%20WARNING%3A%20It%27s%20good%20practice%20to%20set%20at%20least%20one%20of%20the%20%21%21%21%0A%23%21%21%21%20%20%20%20%20%20%20%20%20%20two%20options%20bellow.%20If%20none%20of%20them%20are%20set%2C%20%20%21%21%21%0A%23%21%21%21%20%20%20%20%20%20%20%20%20%20the%20daemon%20will%20accept%20IPC%20connections%20from%20%20%20%21%21%21%0A%23%21%21%21%20%20%20%20%20%20%20%20%20%20anyone%2C%20thus%20allowing%20anyone%20to%20modify%20the%20%20%20%20%21%21%21%0A%23%21%21%21%20%20%20%20%20%20%20%20%20%20rule%20set%20and%20%28de%29authorize%20USB%20devices.%20%20%20%20%20%20%20%21%21%21%0A%0A%23%0A%23%20Users%20allowed%20to%20use%20the%20IPC%20interface.%0A%23%0A%23%20A%20space%20delimited%20list%20of%20usernames%20that%20the%20daemon%20will%0A%23%20accept%20IPC%20connections%20from.%0A%23%0A%23%20IPCAllowedUsers%3Dusername1%20username2%20...%0A%23%0AIPCAllowedUsers%3Droot%0A%0A%23%0A%23%20Groups%20allowed%20to%20use%20the%20IPC%20interface.%0A%23%0A%23%20A%20space%20delimited%20list%20of%20groupnames%20that%20the%20daemon%20will%0A%23%20accept%20IPC%20connections%20from.%0A%23%0A%23%20IPCAllowedGroups%3Dgroupname1%20groupname2%20...%0A%23%0AIPCAllowedGroups%3Dwheel%0A%0A%23%0A%23%20IPC%20access%20control%20definition%20files%20path.%0A%23%0A%23%20The%20files%20at%20this%20location%20will%20be%20interpreted%20by%20the%20daemon%0A%23%20as%20access%20control%20definition%20files.%20The%20%28base%29name%20of%20a%20file%0A%23%20should%20be%20in%20the%20form%3A%0A%23%0A%23%20%20%20%5Buser%5D%5B%3A%3Cgroup%3E%5D%0A%23%0A%23%20and%20should%20contain%20lines%20in%20the%20form%3A%0A%23%0A%23%20%20%20%3Csection%3E%3D%5Bprivilege%5D%20...%0A%23%0A%23%20This%20way%20each%20file%20defines%20who%20is%20able%20to%20connect%20to%20the%20IPC%0A%23%20bus%20and%20what%20privileges%20he%20has.%0A%23%0AIPCAccessControlFiles%3D/etc/usbguard/IPCAccessControl.d/%0A%0A%23%0A%23%20Generate%20device%20specific%20rules%20including%20the%20%22via-port%22%0A%23%20attribute.%0A%23%0A%23%20This%20option%20modifies%20the%20behavior%20of%20the%20allowDevice%0A%23%20action.%20When%20instructed%20to%20generate%20a%20permanent%20rule%2C%0A%23%20the%20action%20can%20generate%20a%20port%20specific%20rule.%20Because%0A%23%20some%20systems%20have%20unstable%20port%20numbering%2C%20the%20generated%0A%23%20rule%20might%20not%20match%20the%20device%20after%20rebooting%20the%20system.%0A%23%0A%23%20If%20set%20to%20false%2C%20the%20generated%20rule%20will%20still%20contain%0A%23%20the%20%22parent-hash%22%20attribute%20which%20also%20defines%20an%20association%0A%23%20to%20the%20parent%20device.%20See%20usbguard-rules.conf%285%29%20for%20more%0A%23%20details.%0A%23%0ADeviceRulesWithPort%3Dfalse%0A%0A%23%0A%23%20USBGuard%20Audit%20events%20log%20backend%0A%23%0A%23%20One%20of%3A%0A%23%0A%23%20%2A%20FileAudit%20-%20Log%20audit%20events%20into%20a%20file%20specified%20by%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20AuditFilePath%20setting%20%28see%20below%29%0A%23%20%2A%20LinuxAudit%20-%20Log%20audit%20events%20using%20the%20Linux%20Audit%0A%23%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20subsystem%20%28using%20audit_log_user_message%29%0A%23%0AAuditBackend%3DLinuxAudit%0A%0A%23%0A%23%20USBGuard%20audit%20events%20log%20file%20path.%0A%23%0A%23AuditFilePath%3D/var/log/usbguard/usbguard-audit.log%0A%0A%23%0A%23%20Hides%20personally%20identifiable%20information%20such%20as%20device%20serial%20numbers%20and%0A%23%20hashes%20of%20descriptors%20%28which%20include%20the%20serial%20number%29%20from%20audit%20entries.%0A%23%0A%23HidePII%3Dfalse }}
        mode: 0600
        path: /etc/usbguard/usbguard-daemon.conf
        overwrite: true

Authorize Human Interface Devices and USB hubs in USBGuard daemon   [ref]rule

To allow authorization of USB devices combining human interface device and hub capabilities by USBGuard daemon, add the line allow with-interface match-all { 03:*:* 09:00:* } to /etc/usbguard/rules.conf.

Warning:  This rule should be understood primarily as a convenience administration feature. This rule ensures that if the USBGuard default rules.conf file is present, it will alter it so that USB human interface devices and hubs are allowed. However, if the rules.conf file is altered by system administrator, the rule does not check if USB human interface devices and hubs are allowed. This assumes that an administrator modified the file with some purpose in mind.
Rationale:

Without allowing Human Interface Devices, it might not be possible to interact with the system. Without allowing hubs, it might not be possible to use any USB devices on the system.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  annotations:
    complianceascode.io/depends-on: xccdf_org.ssgproject.content_rule_package_usbguard_installed
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0Aallow%20with-interface%20match-all%20%7B%2003%3A%2A%3A%2A%2009%3A00%3A%2A%20%7D }}
        mode: 0600
        path: /etc/usbguard/rules.d/75-hid-and-hub.conf
        overwrite: true

System Accounting with auditd   [ref]group

The audit service provides substantial capabilities for recording system activities. By default, the service audits about SELinux AVC denials and certain types of security-relevant events such as system logins, account modifications, and authentication events performed by programs such as sudo. Under its default configuration, auditd has modest disk space requirements, and should not noticeably impact system performance.

NOTE: The Linux Audit daemon auditd can be configured to use the augenrules program to read audit rules files (*.rules) located in /etc/audit/rules.d location and compile them to create the resulting form of the /etc/audit/audit.rules configuration file during the daemon startup (default configuration). Alternatively, the auditd daemon can use the auditctl utility to read audit rules from the /etc/audit/audit.rules configuration file during daemon startup, and load them into the kernel. The expected behavior is configured via the appropriate ExecStartPost directive setting in the /usr/lib/systemd/system/auditd.service configuration file. To instruct the auditd daemon to use the augenrules program to read audit rules (default configuration), use the following setting:

ExecStartPost=-/sbin/augenrules --load
in the /usr/lib/systemd/system/auditd.service configuration file. In order to instruct the auditd daemon to use the auditctl utility to read audit rules, use the following setting:
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules
in the /usr/lib/systemd/system/auditd.service configuration file. Refer to [Service] section of the /usr/lib/systemd/system/auditd.service configuration file for further details.

Government networks often have substantial auditing requirements and auditd can be configured to meet these requirements. Examining some example audit records demonstrates how the Linux audit system satisfies common requirements. The following example from Red Hat Enterprise Linux 7 Documentation available at https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/selinux_users_and_administrators_guide/index#sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages shows the substantial amount of information captured in a two typical "raw" audit messages, followed by a breakdown of the most important fields. In this example the message is SELinux-related and reports an AVC denial (and the associated system call) that occurred when the Apache HTTP Server attempted to access the /var/www/html/file1 file (labeled with the samba_share_t type):
type=AVC msg=audit(1226874073.147:96): avc:  denied  { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
  • msg=audit(1226874073.147:96)
    • The number in parentheses is the unformatted time stamp (Epoch time) for the event, which can be converted to standard time by using the date command.
  • { getattr }
    • The item in braces indicates the permission that was denied. getattr indicates the source process was trying to read the target file's status information. This occurs before reading files. This action is denied due to the file being accessed having the wrong label. Commonly seen permissions include getattr, read, and write.
  • comm="httpd"
    • The executable that launched the process. The full path of the executable is found in the exe= section of the system call (SYSCALL) message, which in this case, is exe="/usr/sbin/httpd".
  • path="/var/www/html/file1"
    • The path to the object (target) the process attempted to access.
  • scontext="unconfined_u:system_r:httpd_t:s0"
    • The SELinux context of the process that attempted the denied action. In this case, it is the SELinux context of the Apache HTTP Server, which is running in the httpd_t domain.
  • tcontext="unconfined_u:object_r:samba_share_t:s0"
    • The SELinux context of the object (target) the process attempted to access. In this case, it is the SELinux context of file1. Note: the samba_share_t type is not accessible to processes running in the httpd_t domain.
  • From the system call (SYSCALL) message, two items are of interest:
    • success=no: indicates whether the denial (AVC) was enforced or not. success=no indicates the system call was not successful (SELinux denied access). success=yes indicates the system call was successful - this can be seen for permissive domains or unconfined domains, such as initrc_t and kernel_t.
    • exe="/usr/sbin/httpd": the full path to the executable that launched the process, which in this case, is exe="/usr/sbin/httpd".

contains 134 rules

Configure auditd Rules for Comprehensive Auditing   [ref]group

The auditd program can perform comprehensive monitoring of system activity. This section describes recommended configuration settings for comprehensive auditing, but a full description of the auditing system's capabilities is beyond the scope of this guide. The mailing list linux-audit@redhat.com exists to facilitate community discussion of the auditing system.

The audit subsystem supports extensive collection of events, including:

  • Tracing of arbitrary system calls (identified by name or number) on entry or exit.
  • Filtering by PID, UID, call success, system call argument (with some limitations), etc.
  • Monitoring of specific files for modifications to the file's contents or metadata.

Auditing rules at startup are controlled by the file /etc/audit/audit.rules. Add rules to it to meet the auditing requirements for your organization. Each line in /etc/audit/audit.rules represents a series of arguments that can be passed to auditctl and can be individually tested during runtime. See documentation in /usr/share/doc/audit-VERSION and in the related man pages for more details.

If copying any example audit rulesets from /usr/share/doc/audit-VERSION, be sure to comment out the lines containing arch= which are not appropriate for your system's architecture. Then review and understand the following rules, ensuring rules are activated as needed for the appropriate architecture.

After reviewing all the rules, reading the following sections, and editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart

contains 116 rules

Record Events that Modify the System's Discretionary Access Controls   [ref]group

At a minimum, the audit system should collect file permission changes for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b32 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b32 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b64 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b64 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

contains 13 rules

Record Events that Modify the System's Discretionary Access Controls - chmod   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82556-2

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20chmod%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20chmod%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-chmod_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - chown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82557-0

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20chown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20chown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-chown_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fchmod   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82558-8

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchmod%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchmod%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchmod_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fchmodat   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82559-6

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchmodat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchmodat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchmodat_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fchown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82560-4

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchown_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fchownat   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82561-2

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchownat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchownat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchownat_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fremovexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82562-0

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000466-GPOS-00210, SRG-OS-000468-GPOS-00212, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000499-CTR-001255, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fremovexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fremovexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fremovexattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - fsetxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82563-8

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000466-GPOS-00210, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fsetxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fsetxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fsetxattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - lchown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82564-6

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000466-GPOS-00210, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000950

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lchown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lchown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lchown_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - lremovexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82565-3

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000466-GPOS-00210, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lremovexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lremovexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lremovexattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - lsetxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82566-1

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000466-GPOS-00210, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lsetxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lsetxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lsetxattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - removexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82567-9

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000462-GPOS-00206, SRG-OS-000463-GPOS-00207, SRG-OS-000468-GPOS-00212, SRG-OS-000471-GPOS-00215, SRG-OS-000474-GPOS-00219, SRG-OS-000466-GPOS-00210, SRG-OS-000064-GPOS-00033, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20removexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20removexattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-removexattr_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Discretionary Access Controls - setxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Identifiers:  CCE-82568-7

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.5.5, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000466-GPOS-00210, SRG-OS-000471-GPOS-00215, SRG-OS-000064-GPOS-00033, SRG-OS-000458-GPOS-00203, SRG-APP-000091-CTR-000160, SRG-APP-000492-CTR-001220, SRG-APP-000493-CTR-001225, SRG-APP-000494-CTR-001230, SRG-APP-000500-CTR-001260, SRG-APP-000507-CTR-001295, SRG-APP-000495-CTR-001235, R73, 10.3.4, 10.3, CNTR-OS-000160, CNTR-OS-000930

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20setxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20setxattr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-setxattr_dac_modification.rules
        overwrite: true

Record Execution Attempts to Run SELinux Privileged Commands   [ref]group

At a minimum, the audit system should collect the execution of SELinux privileged commands for all users and root.

contains 6 rules

Record Any Attempts to Run chcon   [ref]rule

At a minimum, the audit system should collect any execution attempt of the chcon command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/chcon -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/bin/chcon -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/chcon%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_chcon_execution.rules
        overwrite: true

Record Any Attempts to Run restorecon   [ref]rule

At a minimum, the audit system should collect any execution attempt of the restorecon command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/restorecon -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/restorecon -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/restorecon%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_restorecon_execution.rules
        overwrite: true

Record Any Attempts to Run semanage   [ref]rule

At a minimum, the audit system should collect any execution attempt of the semanage command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/semanage -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/semanage -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/semanage%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_semanage_execution.rules
        overwrite: true

Record Any Attempts to Run setfiles   [ref]rule

At a minimum, the audit system should collect any execution attempt of the setfiles command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/setfiles -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/setfiles -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/setfiles%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_setfiles_execution.rules
        overwrite: true

Record Any Attempts to Run setsebool   [ref]rule

At a minimum, the audit system should collect any execution attempt of the setsebool command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/setsebool -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/setsebool -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/setsebool%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_setsebool_execution.rules
        overwrite: true

Record Any Attempts to Run seunshare   [ref]rule

At a minimum, the audit system should collect any execution attempt of the seunshare command for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/seunshare -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F path=/usr/sbin/seunshare -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-82574-5

References:  CCI-000172, AU-2(d), AU-12(c), AC-6(9), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/seunshare%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_seunshare_execution.rules
        overwrite: true

Record File Deletion Events by User   [ref]group

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=unset -F key=delete

contains 5 rules

Ensure auditd Collects File Deletion Events by User - rename   [ref]rule

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rename -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rename -F auid>=1000 -F auid!=unset -F key=delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity:  medium

Identifiers:  CCE-82575-2

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.4, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.1.1, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.MA-2, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.7, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.2.1.7, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20rename%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20rename%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A
        mode: 0644
        path: /etc/audit/rules.d/75-rename-file-deletion-events.rules
        overwrite: true

Ensure auditd Collects File Deletion Events by User - renameat   [ref]rule

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S renameat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S renameat -F auid>=1000 -F auid!=unset -F key=delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity:  medium

Identifiers:  CCE-82576-0

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.4, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.1.1, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.MA-2, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.7, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.2.1.7, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20renameat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20renameat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A
        mode: 0644
        path: /etc/audit/rules.d/75-renameat-file-deletion-events.rules
        overwrite: true

Ensure auditd Collects File Deletion Events by User - rmdir   [ref]rule

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rmdir -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir -F auid>=1000 -F auid!=unset -F key=delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity:  medium

Identifiers:  CCE-82577-8

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.4, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.1.1, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.MA-2, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.7, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.2.1.7, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20rmdir%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20rmdir%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A
        mode: 0644
        path: /etc/audit/rules.d/75-rmdir-file-deletion-events.rules
        overwrite: true

Ensure auditd Collects File Deletion Events by User - unlinkat   [ref]rule

At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S unlinkat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S unlinkat -F auid>=1000 -F auid!=unset -F key=delete

Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity:  medium

Identifiers:  CCE-82579-4

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-000130, CCI-000135, CCI-000169, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.4, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.1.1, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.MA-2, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.7, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, SRG-OS-000466-GPOS-00210, SRG-OS-000467-GPOS-00211, SRG-OS-000468-GPOS-00212, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000501-CTR-001265, SRG-APP-000502-CTR-001270, R73, 10.2.1.7, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000960

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20unlinkat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20unlinkat%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Ddelete%0A
        mode: 0644
        path: /etc/audit/rules.d/75-unlinkat-file-deletion-events.rules
        overwrite: true

Record Unauthorized Access Attempts Events to Files (unsuccessful)   [ref]group

At a minimum, the audit system should collect unauthorized file accesses for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
    -a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
    -a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

contains 32 rules

Record Unsuccessful Permission Changes to Files - chmod   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S chmod -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S chmod -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S chmod -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S chmod -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82619-8

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20chmod%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20chmod%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20chmod%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20chmod%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-chmod_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Ownership Changes to Files - chown   [ref]rule

The audit system should collect unsuccessful file ownership change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S chown -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S chown -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S chown -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S chown -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S lchown,fchown,chown,fchownat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change ownership of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82620-6

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20chown%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20chown%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20chown%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20chown%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-chown_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - creat   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Permission Changes to Files - fchmod   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S fchmod -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S fchmod -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S fchmod -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S fchmod -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82622-2

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchmod%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchmod%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchmod%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchmod%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchmod_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Permission Changes to Files - fchmodat   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S fchmodat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S fchmodat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S fchmodat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S fchmodat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82624-8

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchmodat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchmodat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchmodat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchmodat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchmodat_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Ownership Changes to Files - fchown   [ref]rule

The audit system should collect unsuccessful file ownership change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S fchown -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S fchown -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S fchown -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S fchown -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S lchown,fchown,chown,fchownat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change ownership of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82625-5

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchown%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchown%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchown%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchown%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchown_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Ownership Changes to Files - fchownat   [ref]rule

The audit system should collect unsuccessful file ownership change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S fchownat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S fchownat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S fchownat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S fchownat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S lchown,fchown,chown,fchownat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change ownership of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82626-3

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchownat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fchownat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchownat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fchownat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fchownat_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Permission Changes to Files - fremovexattr   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S fremovexattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S fremovexattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S fremovexattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S fremovexattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82627-1

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fremovexattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fremovexattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fremovexattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fremovexattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fremovexattr_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Permission Changes to Files - fsetxattr   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S fsetxattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S fsetxattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82628-9

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fsetxattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20fsetxattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fsetxattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20fsetxattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-fsetxattr_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - ftruncate   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Ownership Changes to Files - lchown   [ref]rule

The audit system should collect unsuccessful file ownership change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S lchown -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S lchown -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S lchown -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S lchown -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S lchown,fchown,chown,fchownat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change ownership of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82630-5

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lchown%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lchown%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lchown%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lchown%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lchown_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Permission Changes to Files - lremovexattr   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S lremovexattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S lremovexattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S lremovexattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S lremovexattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82631-3

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lremovexattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lremovexattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lremovexattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lremovexattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lremovexattr_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Permission Changes to Files - lsetxattr   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S lsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S lsetxattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S lsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S lsetxattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82632-1

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lsetxattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20lsetxattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lsetxattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20lsetxattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-lsetxattr_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - open   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - open_by_handle_at   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Creation Attempts to Files - open_by_handle_at O_CREAT   [ref]rule

The audit system should collect unauthorized file accesses for all users and root. The open_by_handle_at syscall can be used to create new files when O_CREAT flag is specified. The following auidt rules will asure that unsuccessful attempts to create a file via open_by_handle_at syscall are collected. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the rules below to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the rules below to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S open_by_handle_at -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Modification Attempts to Files - open_by_handle_at O_TRUNC_WRITE   [ref]rule

The audit system should collect detailed unauthorized file accesses for all users and root. The open_by_handle_at syscall can be used to modify files if called for write operation of with O_TRUNC_WRITE flag. The following auidt rules will asure that unsuccessful attempts to modify a file via open_by_handle_at syscall are collected. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the rules below to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the rules below to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S open_by_handle_at -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Ensure auditd Unauthorized Access Attempts To open_by_handle_at Are Ordered Correctly   [ref]rule

The audit system should collect detailed unauthorized file accesses for all users and root. To correctly identify unsuccessful creation, unsuccessful modification and unsuccessful access of files via open_by_handle_at syscall the audit rules collecting these events need to be in certain order. The more specific rules need to come before the less specific rules. The reason for that is that more specific rules cover a subset of events covered in the less specific rules, thus, they need to come before to not be overshadowed by less specific rules, which match a bigger set of events. Make sure that rules for unsuccessful calls of open_by_handle_at syscall are in the order shown below. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), check the order of rules below in a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, check the order of rules below in /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S open_by_handle_at -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
-a always,exit -F arch=b32 -S open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S open_by_handle_at -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
-a always,exit -F arch=b64 -S open_by_handle_at -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-access

Rationale:

The more specific rules cover a subset of events covered by the less specific rules. By ordering them from more specific to less specific, it is assured that the less specific rule will not catch events better recorded by the more specific rule.

Severity:  medium

Record Unsuccessful Creation Attempts to Files - open O_CREAT   [ref]rule

The audit system should collect unauthorized file accesses for all users and root. The open syscall can be used to create new files when O_CREAT flag is specified. The following auidt rules will asure that unsuccessful attempts to create a file via open syscall are collected. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the rules below to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the rules below to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S open -F a1&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S open -F a1&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open -F a1&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S open -F a1&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S open -F a1&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Modification Attempts to Files - open O_TRUNC_WRITE   [ref]rule

The audit system should collect detailed unauthorized file accesses for all users and root. The open syscall can be used to modify files if called for write operation of with O_TRUNC_WRITE flag. The following auidt rules will asure that unsuccessful attempts to modify a file via open syscall are collected. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the rules below to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the rules below to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S open -F a1&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S open -F a1&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open -F a1&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S open -F a1&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S open -F a1&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Ensure auditd Rules For Unauthorized Attempts To open Are Ordered Correctly   [ref]rule

The audit system should collect detailed unauthorized file accesses for all users and root. To correctly identify unsuccessful creation, unsuccessful modification and unsuccessful access of files via open syscall the audit rules collecting these events need to be in certain order. The more specific rules need to come before the less specific rules. The reason for that is that more specific rules cover a subset of events covered in the less specific rules, thus, they need to come before to not be overshadowed by less specific rules, which match a bigger set of events. Make sure that rules for unsuccessful calls of open syscall are in the order shown below. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), check the order of rules below in a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, check the order of rules below in /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S open -F a1&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S open -F a1&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S open -F a1&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S open -F a1&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
-a always,exit -F arch=b32 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S open -F a1&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S open -F a1&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S open -F a1&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S open -F a1&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S open -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
-a always,exit -F arch=b64 -S open -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-access

Rationale:

The more specific rules cover a subset of events covered by the less specific rules. By ordering them from more specific to less specific, it is assured that the less specific rule will not catch events better recorded by the more specific rule.

Severity:  medium

Record Unsuccessful Access Attempts to Files - openat   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Creation Attempts to Files - openat O_CREAT   [ref]rule

The audit system should collect unauthorized file accesses for all users and root. The openat syscall can be used to create new files when O_CREAT flag is specified. The following auidt rules will asure that unsuccessful attempts to create a file via openat syscall are collected. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the rules below to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the rules below to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S openat -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S openat -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S openat -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S openat -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Modification Attempts to Files - openat O_TRUNC_WRITE   [ref]rule

The audit system should collect detailed unauthorized file accesses for all users and root. The openat syscall can be used to modify files if called for write operation of with O_TRUNC_WRITE flag. The following auidt rules will asure that unsuccessful attempts to modify a file via openat syscall are collected. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the rules below to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the rules below to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S openat -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S openat -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S openat -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S openat -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Ensure auditd Rules For Unauthorized Attempts To openat Are Ordered Correctly   [ref]rule

The audit system should collect detailed unauthorized file accesses for all users and root. To correctly identify unsuccessful creation, unsuccessful modification and unsuccessful access of files via openat syscall the audit rules collecting these events need to be in certain order. The more specific rules need to come before the less specific rules. The reason for that is that more specific rules cover a subset of events covered in the less specific rules, thus, they need to come before to not be overshadowed by less specific rules, which match a bigger set of events. Make sure that rules for unsuccessful calls of openat syscall are in the order shown below. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), check the order of rules below in a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, check the order of rules below in /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S openat -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S openat -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b32 -S openat -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S openat -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b32 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
-a always,exit -F arch=b32 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S openat -F a2&0100 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S openat -F a2&0100 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-create
-a always,exit -F arch=b64 -S openat -F a2&01003 -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S openat -F a2&01003 -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-modification
-a always,exit -F arch=b64 -S openat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-access
-a always,exit -F arch=b64 -S openat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-access

Rationale:

The more specific rules cover a subset of events covered by the less specific rules. By ordering them from more specific to less specific, it is assured that the less specific rule will not catch events better recorded by the more specific rule.

Severity:  medium

Record Unsuccessful Permission Changes to Files - removexattr   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S removexattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S removexattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S removexattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S removexattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82647-9

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20removexattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20removexattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20removexattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20removexattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-removexattr_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Delete Attempts to Files - rename   [ref]rule

The audit system should collect unsuccessful file deletion attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S rename -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b32 -S rename -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S rename -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b64 -S rename -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S unlink,unlinkat,rename,renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-delete
Rationale:

Unsuccessful attempts to delete files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20rename%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20rename%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20rename%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20rename%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-rename_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Delete Attempts to Files - renameat   [ref]rule

The audit system should collect unsuccessful file deletion attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b32 -S renameat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b64 -S renameat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S unlink,unlinkat,rename,renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-delete
Rationale:

Unsuccessful attempts to delete files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20renameat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20renameat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20renameat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20renameat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-renameat_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Permission Changes to Files - setxattr   [ref]rule

The audit system should collect unsuccessful file permission change attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S setxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b32 -S setxattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S setxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
-a always,exit -F arch=b64 -S setxattr -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the audit rule checks a system call independently of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat,setxattr,lsetxattr,fsetxattr -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-perm-change
Rationale:

Unsuccessful attempts to change permissions of files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-82650-3

References:  CCI-000172, AU-2(d), AU-12(c), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20setxattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20setxattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20setxattr%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20setxattr%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-setxattr_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Unsuccessful Access Attempts to Files - truncate   [ref]rule

At a minimum, the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S truncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S truncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%23%20This%20content%20is%20a%20section%20of%20an%20Audit%20config%20snapshot%20recommended%20for%20Red%2520Hat%2520Enterprise%2520Linux%2520CoreOS%25204%20systems%20that%20target%20OSPP%20compliance.%0A%23%23%20The%20following%20content%20has%20been%20retreived%20on%202019-03-11%20from%3A%20https%3A//github.com/linux-audit/audit-userspace/blob/master/rules/30-ospp-v42.rules%0A%0A%23%23%20The%20purpose%20of%20these%20rules%20is%20to%20meet%20the%20requirements%20for%20Operating%0A%23%23%20System%20Protection%20Profile%20%28OSPP%29v4.2.%20These%20rules%20depends%20on%20having%0A%23%23%2010-base-config.rules%2C%2011-loginuid.rules%2C%20and%2043-module-load.rules%20installed.%0A%0A%23%23%20Unsuccessful%20file%20creation%20%28open%20with%20O_CREAT%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%260100%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20creat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-create%0A%0A%23%23%20Unsuccessful%20file%20modifications%20%28open%20for%20write%20or%20truncate%29%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%2Copen_by_handle_at%20-F%20a2%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2601003%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20truncate%2Cftruncate%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-modification%0A%0A%23%23%20Unsuccessful%20file%20access%20%28any%20other%20opens%29%20This%20has%20to%20go%20last.%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%2Ccreat%2Ctruncate%2Cftruncate%2Copenat%2Copen_by_handle_at%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dunsuccesful-access }}
        mode: 0600
        path: /etc/audit/rules.d/30-ospp-v42-remediation.rules
        overwrite: true

Record Unsuccessful Delete Attempts to Files - unlinkat   [ref]rule

The audit system should collect unsuccessful file deletion attempts for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file.

-a always,exit -F arch=b32 -S unlinkat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b32 -S unlinkat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S unlinkat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete
-a always,exit -F arch=b64 -S unlinkat -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=unsuccessful-delete

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S unlink,unlinkat,rename,renameat -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=unsuccesful-delete
Rationale:

Unsuccessful attempts to delete files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20unlinkat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20unlinkat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20unlinkat%20-F%20exit%3D-EACCES%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20unlinkat%20-F%20exit%3D-EPERM%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess%0A
        mode: 0644
        path: /etc/audit/rules.d/75-unlinkat_audit_rules_unsuccessful_file_modification.rules
        overwrite: true

Record Information on Kernel Modules Loading and Unloading   [ref]group

To capture kernel module loading and unloading events, use following lines, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:

-a always,exit -F arch=ARCH -S init_module,delete_module -F key=modules
Place to add the lines depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the lines to file /etc/audit/audit.rules.

contains 3 rules

Ensure auditd Collects Information on Kernel Module Unloading - delete_module   [ref]rule

To capture kernel module unloading events, use following line, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:

-a always,exit -F arch=ARCH -S delete_module -F key=modules
Place to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules.

Rationale:

The removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20delete_module%20-k%20module-change%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20delete_module%20-k%20module-change%0A
        mode: 0600
        path: /etc/audit/rules.d/75-kernel-module-loading-delete.rules
        overwrite: true

Ensure auditd Collects Information on Kernel Module Loading and Unloading - finit_module   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d to capture kernel module loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S finit_module -F key=modules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to capture kernel module loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S finit_module -F key=modules

Rationale:

The addition/removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20finit_module%20-k%20module-change%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20finit_module%20-k%20module-change%0A
        mode: 0600
        path: /etc/audit/rules.d/75-kernel-module-loading-finit.rules
        overwrite: true

Ensure auditd Collects Information on Kernel Module Loading - init_module   [ref]rule

To capture kernel module loading events, use following line, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:

-a always,exit -F arch=ARCH -S init_module -F key=modules
Place to add the line depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the line to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the line to file /etc/audit/audit.rules.

Rationale:

The addition of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20init_module%20-k%20module-change%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20init_module%20-k%20module-change%0A
        mode: 0600
        path: /etc/audit/rules.d/75-kernel-module-loading-init.rules
        overwrite: true
contains 3 rules

Record Information on the Use of Privileged Commands   [ref]group

At a minimum, the audit system should collect the execution of privileged commands for all users and root.

contains 22 rules

Ensure auditd Collects Information on the Use of Privileged Commands - at   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/at -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/at -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Identifiers:  CCE-82590-1

References:  CCI-000172, AU-2(d), AU-12(c), AC-6(9), CM-6(a)

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/at%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_at_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - chage   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/chage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/chage -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/chage%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_chage_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - chsh   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/chsh -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/chsh -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/chsh%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_chsh_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - crontab   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/crontab -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/crontab -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/crontab%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_crontab_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - gpasswd   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/gpasswd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/gpasswd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/gpasswd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_gpasswd_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - mount   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/mount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/mount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/mount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_mount_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - newgidmap   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/newgidmap -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/newgidmap -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/newgidmap%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_newgidmap_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - newgrp   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/newgrp -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/newgrp -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/newgrp%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_newgrp_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - newuidmap   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/newuidmap -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/newuidmap -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/newuidmap%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_newuidmap_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - pam_timestamp_check   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/pam_timestamp_check
-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/pam_timestamp_check
-F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/pam_timestamp_check%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_pam_timestamp_check_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - passwd   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/passwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_passwd_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - postdrop   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/postdrop -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/postdrop -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/postdrop%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_postdrop_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - postqueue   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/postqueue -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/postqueue -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/postqueue%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_postqueue_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - pt_chown   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/libexec/pt_chown -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/pt_chown -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/pt_chown%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_pt_chown_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - ssh-keysign   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/libexec/openssh/ssh-keysign -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/libexec/openssh/ssh-keysign%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_libexec_openssh_ssh-keysign_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - su   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/su -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/su -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/su%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_su_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - sudo   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/sudo%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_sudo_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - sudoedit   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/sudoedit -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/sudoedit -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/sudoedit%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_sudoedit_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - umount   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/umount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/umount -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/bin/umount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_bin_umount_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - unix_chkpwd   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/unix_chkpwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/unix_chkpwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/unix_chkpwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_unix_chkpwd_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - userhelper   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/userhelper -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/userhelper -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/userhelper%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_userhelper_execution.rules
        overwrite: true

Ensure auditd Collects Information on the Use of Privileged Commands - usernetctl   [ref]rule

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/usernetctl -F auid>=1000 -F auid!=unset -F key=privileged
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/usernetctl -F auid>=1000 -F auid!=unset -F key=privileged

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threats.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20path%3D/usr/sbin/usernetctl%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dprivileged%0A
        mode: 0644
        path: /etc/audit/rules.d/75-usr_sbin_usernetctl_execution.rules
        overwrite: true

Records Events that Modify Date and Time Information   [ref]group

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time. All changes to the system time should be audited.

contains 5 rules

Record attempts to alter time through adjtimex   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -a%20always%2Cexit%20-F%20arch%3Db64%20-S%20adjtimex%20-k%20audit_time_rules%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20adjtimex%20-k%20audit_time_rules%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-syscall-adjtimex.rules
        overwrite: true

Record Attempts to Alter Time Through clock_settime   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -a%20always%2Cexit%20-F%20arch%3Db64%20-S%20clock_settime%20-F%20a0%3D0x0%20-k%20time-change%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20clock_settime%20-F%20a0%3D0x0%20-k%20time-change%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-syscall-clock-settime.rules
        overwrite: true

Record attempts to alter time through settimeofday   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -a%20always%2Cexit%20-F%20arch%3Db64%20-S%20settimeofday%20-k%20audit_time_rules%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20settimeofday%20-k%20audit_time_rules%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-syscall-settimeofday.rules
        overwrite: true

Record Attempts to Alter Time Through stime   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d for both 32 bit and 64 bit systems:

-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit lookup table, the corresponding "-F arch=b64" form of this rule is not expected to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule form itself is sufficient for both 32 bit and 64 bit systems). If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit lookup table, the corresponding "-F arch=b64" form of this rule is not expected to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule form itself is sufficient for both 32 bit and 64 bit systems). The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined system calls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -a%20always%2Cexit%20-F%20arch%3Db64%20-S%20stime%20-k%20audit_time_rules%0A-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20stime%20-k%20audit_time_rules%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-syscall-stime.rules
        overwrite: true

Record Attempts to Alter the localtime File   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-w /etc/localtime -p wa -k audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/localtime -p wa -k audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport and should always be used.

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -w%20/etc/localtime%20-p%20wa%20-k%20audit_time_rules%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-etclocaltime-wa-audit_time_rules.rules
        overwrite: true

Record Events that Modify User/Group Information via open syscall - /etc/group   [ref]rule

The audit system should collect write events to /etc/group file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S open -F a1&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
Rationale:

Creation of groups through direct edition of /etc/group could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2603%20-F%20path%3D/etc/group%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2603%20-F%20path%3D/etc/group%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_group_open_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via open_by_handle_at syscall - /etc/group   [ref]rule

The audit system should collect write events to /etc/group file for all group and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open_by_handle_at -F a2&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
Rationale:

Creation of groups through direct edition of /etc/group could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open_by_handle_at%20-F%20a2%2603%20-F%20path%3D/etc/group%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open_by_handle_at%20-F%20a2%2603%20-F%20path%3D/etc/group%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_group_open_by_handle_at_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via openat syscall - /etc/group   [ref]rule

The audit system should collect write events to /etc/group file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S openat -F a2&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S openat -F a2&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S openat -F a2&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&03 -F path=/etc/group -F auid>=1000 -F auid!=unset -F key=modify
Rationale:

Creation of groups through direct edition of /etc/group could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%20-F%20a2%2603%20-F%20path%3D/etc/group%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%20-F%20a2%2603%20-F%20path%3D/etc/group%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_group_openat_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via open syscall - /etc/gshadow   [ref]rule

The audit system should collect write events to /etc/gshadow file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S open -F a1&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
Rationale:

Creation of users through direct edition of /etc/gshadow could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2603%20-F%20path%3D/etc/gshadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2603%20-F%20path%3D/etc/gshadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_gshadow_open_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via open_by_handle_at syscall - /etc/gshadow   [ref]rule

The audit system should collect write events to /etc/gshadow file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open_by_handle_at -F a2&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
Rationale:

Creation of users through direct edition of /etc/gshadow could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open_by_handle_at%20-F%20a2%2603%20-F%20path%3D/etc/gshadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open_by_handle_at%20-F%20a2%2603%20-F%20path%3D/etc/gshadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_gshadow_open_by_handle_at_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via openat syscall - /etc/gshadow   [ref]rule

The audit system should collect write events to /etc/gshadow file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S openat -F a2&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S openat -F a2&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S openat -F a2&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&03 -F path=/etc/gshadow -F auid>=1000 -F auid!=unset -F key=user-modify
Rationale:

Creation of users through direct edition of /etc/gshadow could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%20-F%20a2%2603%20-F%20path%3D/etc/gshadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%20-F%20a2%2603%20-F%20path%3D/etc/gshadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_gshadow_openat_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via open syscall - /etc/passwd   [ref]rule

The audit system should collect write events to /etc/passwd file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S open -F a1&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
Rationale:

Creation of users through direct edition of /etc/passwd could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2603%20-F%20path%3D/etc/passwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2603%20-F%20path%3D/etc/passwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_passwd_open_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via open_by_handle_at syscall - /etc/passwd   [ref]rule

The audit system should collect write events to /etc/passwd file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open_by_handle_at -F a2&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
Rationale:

Creation of users through direct edition of /etc/passwd could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open_by_handle_at%20-F%20a2%2603%20-F%20path%3D/etc/passwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open_by_handle_at%20-F%20a2%2603%20-F%20path%3D/etc/passwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_passwd_open_by_handle_at_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via openat syscall - /etc/passwd   [ref]rule

The audit system should collect write events to /etc/passwd file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S openat -F a2&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S openat -F a2&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S openat -F a2&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S openat,open_by_handle_at -F a2&03 -F path=/etc/passwd -F auid>=1000 -F auid!=unset -F key=modify
Rationale:

Creation of users through direct edition of /etc/passwd could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%20-F%20a2%2603%20-F%20path%3D/etc/passwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%20-F%20a2%2603%20-F%20path%3D/etc/passwd%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_passwd_openat_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via open syscall - /etc/shadow   [ref]rule

The audit system should collect write events to /etc/shadow file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open -F a1&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S open -F a1&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S open,openat,open_by_handle_at -F a1&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
Rationale:

Creation of users through direct edition of /etc/shadow could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open%20-F%20a1%2603%20-F%20path%3D/etc/shadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open%20-F%20a1%2603%20-F%20path%3D/etc/shadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_shadow_open_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via open_by_handle_at syscall - /etc/shadow   [ref]rule

The audit system should collect write events to /etc/shadow file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S open_by_handle_at -F a2&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S open_by_handle_at -F a2&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S open_by_handle_at -F a2&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S open,openat,open_by_handle_at -F a2&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
Rationale:

Creation of users through direct edition of /etc/shadow could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20open_by_handle_at%20-F%20a2%2603%20-F%20path%3D/etc/shadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20open_by_handle_at%20-F%20a2%2603%20-F%20path%3D/etc/shadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_shadow_open_by_handle_at_path_syscall.rules
        overwrite: true

Record Events that Modify User/Group Information via openat syscall - /etc/shadow   [ref]rule

The audit system should collect write events to /etc/shadow file for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S openat -F a2&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S openat -F a2&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S openat -F a2&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping system calls related to the same event is more efficient. See the following example:
-a always,exit -F arch=b32 -S open,openat,open_by_handle_at -F a2&03 -F path=/etc/shadow -F auid>=1000 -F auid!=unset -F key=user-modify
Rationale:

Creation of users through direct edition of /etc/shadow could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20openat%20-F%20a2%2603%20-F%20path%3D/etc/shadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20openat%20-F%20a2%2603%20-F%20path%3D/etc/shadow%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dmodify%0A
        mode: 0644
        path: /etc/audit/rules.d/75-etc_shadow_openat_path_syscall.rules
        overwrite: true

Make the auditd Configuration Immutable   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d in order to make the auditd configuration immutable:

-e 2
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file in order to make the auditd configuration immutable:
-e 2
With this setting, a reboot will be required to change any audit rules.

Rationale:

Making the audit configuration immutable prevents accidental as well as malicious modification of the audit rules, although it may be problematic if legitimate changes are needed during system operation.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-e%202%0A
        mode: 0600
        path: /etc/audit/rules.d/90-immutable.rules
        overwrite: true

Record Events that Modify the System's Mandatory Access Controls   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-w /etc/selinux/ -p wa -k MAC-policy
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/selinux/ -p wa -k MAC-policy

Rationale:

The system's mandatory access policy (SELinux) should not be arbitrarily changed by anything other than administrator action. All changes to MAC policy should be audited.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -w%20/etc/selinux/%20-p%20wa%20-k%20MAC-policy%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-etcselinux-wa-MAC-policy.rules
        overwrite: true

Ensure auditd Collects Information on Exporting to Media (successful)   [ref]rule

At a minimum, the audit system should collect media exportation events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=unset -F key=export
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=unset -F key=export

Rationale:

The unauthorized exportation of data to external media could result in an information leak where classified information, Privacy Act information, and intellectual property could be lost. An audit trail should be created each time a filesystem is mounted to help identify and guard against information loss.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20mount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20mount%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Dperm_mod%0A
        mode: 0644
        path: /etc/audit/rules.d/75-mount_dac_modification.rules
        overwrite: true

Record Events that Modify the System's Network Environment   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S sethostname,setdomainname -F key=audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname,setdomainname -F key=audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification

Rationale:

The network environment should not be modified by anything other than administrator action. Any change to network parameters should be audited.

Severity:  medium

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-a%20always%2Cexit%20-F%20arch%3Db32%20-S%20sethostname%2Csetdomainname%20-F%20key%3Daudit_rules_networkconfig_modification%0A-a%20always%2Cexit%20-F%20arch%3Db64%20-S%20sethostname%2Csetdomainname%20-F%20key%3Daudit_rules_networkconfig_modification%0A-w%20/etc/issue%20-p%20wa%20-k%20audit_rules_networkconfig_modification%0A-w%20/etc/issue.net%20-p%20wa%20-k%20audit_rules_networkconfig_modification%0A-w%20/etc/hosts%20-p%20wa%20-k%20audit_rules_networkconfig_modification%0A-w%20/etc/sysconfig/network%20-p%20wa%20-k%20audit_rules_networkconfig_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/75-audit_rules_networkconfig_modification.rules
        overwrite: true

Record Attempts to Alter Process and Session Initiation Information   [ref]rule

The audit system already collects process information for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d in order to watch for attempted manual edits of files involved in storing such process information:

-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file in order to watch for attempted manual edits of files involved in storing such process information:
-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session

Rationale:

Manual editing of these files may indicate nefarious activity, such as an attacker attempting to remove evidence of an intrusion.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---


apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %0A-w%20/var/run/utmp%20-p%20wa%20-k%20session%0A-w%20/var/log/btmp%20-p%20wa%20-k%20session%0A-w%20/var/log/wtmp%20-p%20wa%20-k%20session%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-audit-session-events.rules
        overwrite: true

Ensure auditd Collects System Administrator Actions   [ref]rule

At a minimum, the audit system should collect administrator actions for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions

Rationale:

The actions taken by system administrators should be audited to keep a record of what was executed on the system, as well as, for accountability purposes.

Severity:  medium

Identifiers:  CCE-82613-1

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000130, CCI-000135, CCI-000169, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, AC-2(7)(b), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.2, Req-10.2.5.b, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000304-GPOS-00121, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000026-CTR-000070, SRG-APP-000027-CTR-000075, SRG-APP-000028-CTR-000080, SRG-APP-000291-CTR-000675, SRG-APP-000292-CTR-000680, SRG-APP-000293-CTR-000685, SRG-APP-000294-CTR-000690, SRG-APP-000319-CTR-000745, SRG-APP-000320-CTR-000750, SRG-APP-000509-CTR-001305, R73, 10.2.1.5, 10.2.1, 10.2, CNTR-OS-000050, CNTR-OS-000060, CNTR-OS-000070

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -w%20/etc/sudoers.d/%20-p%20wa%20-k%20actions%0A-w%20/etc/sudoers%20-p%20wa%20-k%20actions%0A }}
        mode: 0600
        path: /etc/audit/rules.d/75-audit-sysadmin-actions.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/group   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/group -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/group -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82654-5

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001403, CCI-001404, CCI-001405, CCI-000172, CCI-000130, CCI-002130, CCI-000135, CCI-000169, CCI-002884, CCI-000018, CCI-000015, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/group%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_group_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/gshadow   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/gshadow -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/gshadow -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82655-2

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001403, CCI-001404, CCI-001405, CCI-000172, CCI-000130, CCI-002130, CCI-000135, CCI-000169, CCI-002884, CCI-000018, CCI-000015, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/gshadow%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_gshadow_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/security/opasswd   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82656-0

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001403, CCI-001404, CCI-001405, CCI-000172, CCI-000130, CCI-002130, CCI-000135, CCI-000169, CCI-002884, CCI-000018, CCI-000015, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000495-CTR-001235, SRG-APP-000496-CTR-001240, SRG-APP-000497-CTR-001245, SRG-APP-000498-CTR-001250, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000940, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/security/opasswd%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_security_opasswd_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/passwd   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/passwd -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/passwd -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82657-8

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001403, CCI-001404, CCI-001405, CCI-000172, CCI-000130, CCI-002130, CCI-000135, CCI-000169, CCI-002884, CCI-000018, CCI-000015, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000304-GPOS-00121, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-OS-000274-GPOS-00104, SRG-OS-000275-GPOS-00105, SRG-OS-000276-GPOS-00106, SRG-OS-000277-GPOS-00107, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/passwd%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_passwd_usergroup_modification.rules
        overwrite: true

Record Events that Modify User/Group Information - /etc/shadow   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d, in order to capture events that modify account changes:

-w /etc/shadow -p wa -k audit_rules_usergroup_modification


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file, in order to capture events that modify account changes:

-w /etc/shadow -p wa -k audit_rules_usergroup_modification

Rationale:

In addition to auditing new user and group accounts, these watches will alert the system administrator(s) to any modifications. Any unexpected users, groups, or modifications should be investigated for legitimacy.

Severity:  medium

Identifiers:  CCE-82658-6

References:  1, 11, 12, 13, 14, 15, 16, 18, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS06.03, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001403, CCI-001404, CCI-001405, CCI-000172, CCI-000130, CCI-002130, CCI-000135, CCI-000169, CCI-002884, CCI-000018, CCI-000015, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.2.2, 4.3.3.3.9, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.8, 4.3.3.6.6, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.1, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.1.2, A.6.2.1, A.6.2.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-1, PR.AC-3, PR.AC-4, PR.AC-6, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000062-GPOS-00031, SRG-OS-000304-GPOS-00121, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000470-GPOS-00214, SRG-OS-000471-GPOS-00215, SRG-OS-000239-GPOS-00089, SRG-OS-000240-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000466-GPOS-00210, SRG-OS-000476-GPOS-00221, SRG-APP-000495-CTR-001235, SRG-APP-000499-CTR-001255, SRG-APP-000503-CTR-001275, R73, 10.2.1.5, 10.2.1, 10.2, CNTR-OS-000930, CNTR-OS-000950, CNTR-OS-000970

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,-w%20/etc/shadow%20-p%20wa%20-k%20audit_rules_usergroup_modification%0A
        mode: 0644
        path: /etc/audit/rules.d/30-etc_shadow_usergroup_modification.rules
        overwrite: true

Record Access Events to Audit Log Directory   [ref]rule

The audit system should collect access events to read audit log directory. The following audit rule will assure that access to audit log directory are collected.

-a always,exit -F dir=/var/log/audit/ -F perm=r -F auid>=1000 -F auid!=unset -F key=access-audit-trail
If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the rule to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the rule to /etc/audit/audit.rules file.

Rationale:

Attempts to read the logs should be recorded, suspicious access to audit log files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.'

Severity:  medium

Identifiers:  CCE-82712-1

References:  AU-2(d), AU-12(c), AC-6(9), CM-6(a), 10.3.1, 10.3

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
---
#

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ -a%20always%2Cexit%20-F%20dir%3D/var/log/audit/%20-F%20perm%3Dr%20-F%20auid%3E%3D1000%20-F%20auid%21%3Dunset%20-F%20key%3Daccess-audit-trail%0A }}
        mode: 0600
        path: /etc/audit/rules.d/30-access-var-log-audit.rules
        overwrite: true

System Audit Logs Must Have Mode 0750 or Less Permissive   [ref]rule

If log_group in /etc/audit/auditd.conf is set to a group other than the root group account, change the mode of the audit log files with the following command:

$ sudo chmod 0750 /var/log/audit

Otherwise, change the mode of the audit log files with the following command:
$ sudo chmod 0700 /var/log/audit

Rationale:

If users can write to audit logs, audit trails can be modified or destroyed.

Severity:  medium

System Audit Logs Must Be Owned By Root   [ref]rule

All audit logs must be owned by root user and group. By default, the path for audit log is

/var/log/audit/
. To properly set the owner of /var/log/audit, run the command:
$ sudo chown root /var/log/audit 
To properly set the owner of /var/log/audit/*, run the command:
$ sudo chown root /var/log/audit/* 

Rationale:

Unauthorized disclosure of audit records can reveal system and configuration data to attackers, thus compromising its confidentiality.

Severity:  medium

System Audit Logs Must Have Mode 0640 or Less Permissive   [ref]rule

Determine where the audit logs are stored with the following command:

$ sudo grep -iw log_file /etc/audit/auditd.conf
log_file = /var/log/audit/audit.log
Configure the audit log to be protected from unauthorized read access by setting the correct permissive mode with the following command:
$ sudo chmod 0600 audit_log_file
By default, audit_log_file is "/var/log/audit/audit.log".

Rationale:

If users can write to audit logs, audit trails can be modified or destroyed.

Severity:  medium

Configure auditd Data Retention   [ref]group

The audit system writes data to /var/log/audit/audit.log. By default, auditd rotates 5 logs by size (6MB), retaining a maximum of 30MB of data in total, and refuses to write entries when the disk is too full. This minimizes the risk of audit data filling its partition and impacting other services. This also minimizes the risk of the audit daemon temporarily disabling the system if it cannot write audit log (which it can be configured to do). For a busy system or a system which is thoroughly auditing system activity, the default settings for data retention may be insufficient. The log file size needed will depend heavily on what types of events are being audited. First configure auditing to log all the events of interest. Then monitor the log size manually for awhile to determine what file size will allow you to keep the required data for the correct time period.

Using a dedicated partition for /var/log/audit prevents the auditd logs from disrupting system functionality if they fill, and, more importantly, prevents other activity in /var from filling the partition and stopping the audit trail. (The audit logs are size-limited and therefore unlikely to grow without bound unless configured to do so.) Some machines may have requirements that no actions occur which cannot be audited. If this is the case, then auditd can be configured to halt the machine if it runs out of space. Note: Since older logs are rotated, configuring auditd this way does not prevent older logs from being rotated away before they can be viewed. If your system is configured to halt when logging cannot be performed, make sure this can never happen under normal circumstances! Ensure that /var/log/audit is on its own partition, and that this partition is larger than the maximum amount of data auditd will retain normally.

contains 14 rules

Configure auditd Disk Error Action on Disk Error   [ref]rule

The auditd service can be configured to take an action when there is a disk error. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting ACTION appropriately:

disk_error_action = ACTION
Set this value to single to cause the system to switch to single-user mode for corrective action. Acceptable values also include syslog, exec, single, and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. Details regarding all possible values for ACTION are described in the auditd.conf man page.

Rationale:

Taking appropriate action in case of disk errors will minimize the possibility of losing audit records.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd Disk Full Action when Disk Space Is Full   [ref]rule

The auditd service can be configured to take an action when disk space is running low but prior to running out of space completely. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting ACTION appropriately:

disk_full_action = ACTION
Set this value to single to cause the system to switch to single-user mode for corrective action. Acceptable values also include syslog, exec, single, and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. Details regarding all possible values for ACTION are described in the auditd.conf man page.

Rationale:

Taking appropriate action in case of a filled audit storage volume will minimize the possibility of losing audit records.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd admin_space_left Action on Low Disk Space   [ref]rule

The auditd service can be configured to take an action when disk space is running low but prior to running out of space completely. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting ACTION appropriately:

admin_space_left_action = ACTION
Set this value to single to cause the system to switch to single user mode for corrective action. Acceptable values also include suspend and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. Details regarding all possible values for ACTION are described in the auditd.conf man page.

Rationale:

Administrators should be made aware of an inability to record audit records. If a separate partition or logical volume of adequate size is used, running low on space for audit records should never occur.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd flush priority   [ref]rule

The auditd service can be configured to synchronously write audit event data to disk. Add or correct the following line in /etc/audit/auditd.conf to ensure that audit event data is fully synchronized with the log files on the disk:

flush = incremental_async

Rationale:

Audit data should be synchronously written to disk to ensure log integrity. These parameters assure that all audit event data is fully synchronized with the log files on the disk.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd Max Log File Size   [ref]rule

Determine the amount of audit data (in megabytes) which should be retained in each log file. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting the correct value of 6 for STOREMB:

max_log_file = STOREMB
Set the value to 6 (MB) or higher for general-purpose systems. Larger values, of course, support retention of even more audit data.

Rationale:

The total storage for audit log files must be large enough to retain log information over the period required. This is a function of the maximum log file size and the number of logs retained.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd max_log_file_action Upon Reaching Maximum Log Size   [ref]rule

The default action to take when the logs reach their maximum size is to rotate the log files, discarding the oldest one. To configure the action taken by auditd, add or correct the line in /etc/audit/auditd.conf:

max_log_file_action = ACTION
Possible values for ACTION are described in the auditd.conf man page. These include:
  • ignore
  • syslog
  • suspend
  • rotate
  • keep_logs
Set the ACTION to rotate. The setting is case-insensitive.

Rationale:

Automatically rotating logs (by setting this to rotate) minimizes the chances of the system unexpectedly running out of disk space by being overwhelmed with log data. However, for systems that must never discard log data, or which use external processes to transfer it and reclaim space, keep_logs can be employed.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd Number of Logs Retained   [ref]rule

Determine how many log files auditd should retain when it rotates logs. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting NUMLOGS with the correct value of 5:

num_logs = NUMLOGS
Set the value to 5 for general-purpose systems. Note that values less than 2 result in no log rotation.

Rationale:

The total storage for audit log files must be large enough to retain log information over the period required. This is a function of the maximum log file size and the number of logs retained.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd space_left on Low Disk Space   [ref]rule

The auditd service can be configured to take an action when disk space is running low but prior to running out of space completely. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting SIZE_in_MB appropriately:

space_left = SIZE_in_MB
Set this value to the appropriate size in Megabytes cause the system to notify the user of an issue.

Rationale:

Notifying administrators of an impending disk space problem may allow them to take corrective action prior to any disruption.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Configure auditd space_left Action on Low Disk Space   [ref]rule

The auditd service can be configured to take an action when disk space starts to run low. Edit the file /etc/audit/auditd.conf. Modify the following line, substituting ACTION appropriately:

space_left_action = ACTION
Possible values for ACTION are described in the auditd.conf man page. These include:
  • syslog
  • email
  • exec
  • suspend
  • single
  • halt
Set this to email (instead of the default, which is suspend) as it is more likely to get prompt attention. Acceptable values also include suspend, single, and halt.

Rationale:

Notifying administrators of an impending disk space problem may allow them to take corrective action prior to any disruption.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Set number of records to cause an explicit flush to audit logs   [ref]rule

To configure Audit daemon to issue an explicit flush to disk command after writing 50 records, set freq to 50 in /etc/audit/auditd.conf.

Rationale:

If option freq isn't set to 50, the flush to disk may happen after higher number of records, increasing the danger of audit loss.

Severity:  medium

Identifiers:  CCE-82512-5

References:  CCI-000154, CM-6, FAU_GEN.1, SRG-OS-000051-GPOS-00024

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Include Local Events in Audit Logs   [ref]rule

To configure Audit daemon to include local events in Audit logs, set local_events to yes in /etc/audit/auditd.conf. This is the default setting.

Rationale:

If option local_events isn't set to yes only events from network will be aggregated.

Severity:  medium

Identifiers:  CCE-82509-1

References:  CCI-000366, CCI-000169, CM-6, SRG-OS-000062-GPOS-00031, SRG-OS-000480-GPOS-00227

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Resolve information before writing to audit logs   [ref]rule

To configure Audit daemon to resolve all uid, gid, syscall, architecture, and socket address information before writing the events to disk, set log_format to ENRICHED in /etc/audit/auditd.conf.

Rationale:

If option log_format isn't set to ENRICHED, the audit records will be stored in a format exactly as the kernel sends them.

Severity:  low

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Set type of computer node name logging in audit logs   [ref]rule

To configure Audit daemon to use a unique identifier as computer node name in the audit events, set name_format to hostname in /etc/audit/auditd.conf.

Warning:  Whenever the variable
var_auditd_name_format
uses a multiple value option, for example
A|B|C
, the first value will be used when remediating this rule.
Rationale:

If option name_format is left at its default value of none, audit events from different computers may be hard to distinguish.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Write Audit Logs to the Disk   [ref]rule

To configure Audit daemon to write Audit logs to the disk, set write_logs to yes in /etc/audit/auditd.conf. This is the default setting.

Rationale:

If write_logs isn't set to yes, the Audit logs will not be written to the disk.

Severity:  medium

Identifiers:  CCE-82510-9

References:  CCI-000366, CM-6, SRG-OS-000480-GPOS-00227

Remediation script:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    storage:
      files:
      - contents:
          source: data:,{{ %23%0A%23%20This%20file%20controls%20the%20configuration%20of%20the%20audit%20daemon%0A%23%0A%0Alocal_events%20%3D%20yes%0Awrite_logs%20%3D%20yes%0Alog_file%20%3D%20/var/log/audit/audit.log%0Alog_group%20%3D%20root%0Alog_format%20%3D%20ENRICHED%0Aflush%20%3D%20%7B%7B.var_auditd_flush%7D%7D%0Afreq%20%3D%2050%0Amax_log_file%20%3D%20%7B%7B.var_auditd_max_log_file%7D%7D%0Anum_logs%20%3D%20%7B%7B.var_auditd_num_logs%7D%7D%0Apriority_boost%20%3D%204%0Aname_format%20%3D%20hostname%0A%23%23name%20%3D%20mydomain%0Amax_log_file_action%20%3D%20%7B%7B.var_auditd_max_log_file_action%7D%7D%0Aspace_left%20%3D%20%7B%7B.var_auditd_space_left%7D%7D%0Aspace_left_action%20%3D%20%7B%7B.var_auditd_space_left_action%7D%7D%0Averify_email%20%3D%20yes%0Aaction_mail_acct%20%3D%20%7B%7B.var_auditd_action_mail_acct%7D%7D%0Aadmin_space_left%20%3D%2050%0Aadmin_space_left_action%20%3D%20syslog%0Adisk_full_action%20%3D%20%7B%7B.var_auditd_disk_full_action%7D%7D%0Adisk_error_action%20%3D%20%7B%7B.var_auditd_disk_error_action%7D%7D%0Ause_libwrap%20%3D%20yes%0A%23%23tcp_listen_port%20%3D%2060%0Atcp_listen_queue%20%3D%205%0Atcp_max_per_addr%20%3D%201%0A%23%23tcp_client_ports%20%3D%201024-65535%0Atcp_client_max_idle%20%3D%200%0Atransport%20%3D%20TCP%0Akrb5_principal%20%3D%20auditd%0A%23%23krb5_key_file%20%3D%20/etc/audit/audit.key%0Adistribute_network%20%3D%20no%0Aq_depth%20%3D%20400%0Aoverflow_action%20%3D%20syslog%0Amax_restarts%20%3D%2010%0Aplugin_dir%20%3D%20/etc/audit/plugins.d }}
        mode: 0640
        path: /etc/audit/auditd.conf
        overwrite: true

Ensure the audit Subsystem is Installed   [ref]rule

The audit package should be installed.

Rationale:

The auditd service is an access monitoring and accounting daemon, watching system calls to audit any access, in comparison with potential local access control policy such as SELinux policy.

Severity:  medium

Enable auditd Service   [ref]rule

The auditd service is an essential userspace component of the Linux Auditing System, as it is responsible for writing audit records to disk. The auditd service can be enabled with the following manifest:

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 75-master-auditd-enable
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: auditd.service
        enabled: true

This will enable the auditd service in all the nodes labeled with the "master" role.

Note that this needs to be done for each MachineConfigPool

For more information on how to configure nodes with the Machine Config Operator see the relevant documentation.

Rationale:

Without establishing what type of events occurred, it would be difficult to establish, correlate, and investigate the events leading up to an outage or attack. Ensuring the auditd service is active ensures audit records generated by the kernel are appropriately recorded.

Additionally, a properly configured audit subsystem ensures that actions of individual system users can be uniquely traced to those users so they can be held accountable for their actions.

Severity:  medium

Identifiers:  CCE-82463-1

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.3.1, 3.3.2, 3.3.6, CCI-000133, CCI-001881, CCI-001875, CCI-000154, CCI-001882, CCI-000158, CCI-001914, CCI-000169, CCI-001464, CCI-001878, CCI-001877, CCI-001889, CCI-000135, CCI-002884, CCI-001487, CCI-003938, CCI-000132, CCI-004188, CCI-000134, CCI-000172, CCI-000130, CCI-000131, CCI-001879, CCI-001880, CCI-001876, 164.308(a)(1)(ii)(D), 164.308(a)(5)(ii)(C), 164.310(a)(2)(iv), 164.310(d)(2)(iii), 164.312(b), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, CIP-004-6 R3.3, CIP-007-3 R6.5, AC-2(g), AU-3, AU-10, AU-2(d), AU-12(c), AU-14(1), AC-6(9), CM-6(a), SI-4(23), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1, Req-10.1, SRG-OS-000062-GPOS-00031, SRG-OS-000037-GPOS-00015, SRG-OS-000038-GPOS-00016, SRG-OS-000039-GPOS-00017, SRG-OS-000040-GPOS-00018, SRG-OS-000041-GPOS-00019, SRG-OS-000042-GPOS-00021, SRG-OS-000051-GPOS-00024, SRG-OS-000054-GPOS-00025, SRG-OS-000122-GPOS-00063, SRG-OS-000254-GPOS-00095, SRG-OS-000255-GPOS-00096, SRG-OS-000337-GPOS-00129, SRG-OS-000348-GPOS-00136, SRG-OS-000349-GPOS-00137, SRG-OS-000350-GPOS-00138, SRG-OS-000351-GPOS-00139, SRG-OS-000352-GPOS-00140, SRG-OS-000353-GPOS-00141, SRG-OS-000354-GPOS-00142, SRG-OS-000358-GPOS-00145, SRG-OS-000365-GPOS-00152, SRG-OS-000392-GPOS-00172, SRG-OS-000475-GPOS-00220, SRG-APP-000095-CTR-000170, SRG-APP-000409-CTR-000990, SRG-APP-000508-CTR-001300, SRG-APP-000510-CTR-001310, R33, R73, 10.2.1, 10.2, CNTR-OS-000150, CNTR-OS-000180

Remediation script:   (show)

---
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
    systemd:
      units:
      - name: auditd.service
        enabled: true

Extend Audit Backlog Limit for the Audit Daemon   [ref]rule

To improve the kernel capacity to queue all log events, even those which occurred prior to the audit daemon, add the argument audit_backlog_limit=8192 to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

audit_backlog_limit sets the queue length for audit events awaiting transfer to the audit daemon. Until the audit daemon is up and running, all log messages are stored in this queue. If the queue is overrun during boot process, the action defined by audit failure flag is taken.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - audit_backlog_limit=8192

Enable Auditing for Processes Which Start Prior to the Audit Daemon   [ref]rule

To ensure all processes can be audited, even those which start prior to the audit daemon, add the argument audit=1 to all BLS (Boot Loader Specification) entries ('options' line) for the Linux operating system in /boot/loader/entries/*.conf.

Rationale:

Each process on the system carries an "auditable" flag which indicates whether its activities can be audited. Although auditd takes care of enabling this for all processes which launch after it does, adding the kernel argument ensures it is set for every process during boot.

Severity:  medium

Remediation script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:restrict

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
spec:
  config:
    ignition:
      version: 3.1.0
  kernelArguments:
    - audit=1
Red Hat and Red Hat Enterprise Linux are either registered trademarks or trademarks of Red Hat, Inc. in the United States and other countries. All other names are registered trademarks or trademarks of their respective companies.